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The symmetry and simplicity of the lambda calculus sets a

standard against which all languages can be compared. For
instance, the essential equivalence between formal parameters and
declarations in the lamoda calculus suggests a solution to many
problems of language design. This has been used in several
experimental languages, e.g. Quest.

Although the lambda calculus is capable of computing any
computable function, it provides a model of computation that is
much closer to real languages than most other such models (e.g.
Markov algorithms, Turing machines, recursive functions). It is

therefore more relevent to the real problems of language design.

The programming practices and modes of thought used with the
lambda calculus and its derivatives (such as LISP) have formed
the foundation of f unct i o nal programmi ng - the method of program-
ming recently popularized by Backus and characterized by a high-
level applicative programming style. The lambda calculus is

essential for an understanding of the design and implementation
of such 1 anguages .



1.2 The Lambda Calculus

1.2.1 calculus define^
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1.2.2 bound variables d efined .

One of the central ideas of the lambda calculus
bound variable (sometimes called a dummy var iable ) .

ables are common in all mathematical notations, for
the summation

is that of a

Bound vari-
instance, in

i = l
x

the is the bound variable. It is a characteristic of bound
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variables that it doesn't natter what thev are. ^or instance,

k=l K

neans exactly the sane thing as the previous summation. Simi-
larly, the integral of x~-3x with resoect to x:

Tx 2-3x dx
T)

is the same as the integral of u -3u with resoect to u:

Pu 2-3u du
T)

In set theory, the set of all x such that x^>0 is the same as the
set of all n such that n> n

:

{x!x>0} = {n!n>0}

Also, a proposition such as "tor every x, x+l>x":

¥x{ x+l>x }

is the same as the oroposition "tor every y, y+l>y":

¥y{ y+l>y }

In the following examnles the bound variables are listed on the
r ight

.
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Expression Bound
Variable

Verbalization

1 = 1

i the sum tor i from 1 ...

.ft f(1)
1 = 1

i the oroduct for j from 1 ...

d (x 2-3x)/dx X the derivative with resDect to x of

n
v (y

2-3y) y the derivative with resoect to v of

t
Tx z-3xdx

T3

X the integral with respect to x of

{ x ! x>0 } X the set: of all x such that

Vx{ X+l>x } X tor all x

,

3y( 2y=y } y there exists a y such that

<=x . x>y X any x such that

?y.?y=l y the uniaue y such that

1.2.3 bound and free occurrences, and scoos

Two ideas that will be very useful to us are bound
occurrence and free occurrence. Consider the exDression

£a
1 = 1

n

The occurrence of 'j' in 'A^' is called a bound occurren<
the variable 'j'. It is bound bv the summation operato;

ice of
1'. It is bound by the summation operator (l) ,

which is called the bind inq site (or just binding ) of this
occurrence of 'i*. w e can see that 'j' is bound by noting that
we can change it to any other variable (except 'i') without
changing the meaning of the expression. ^or instance,

El
i *- A,

k = l
ik

Any occurrence of a variable that is not a bound occurrence is
called a free occurrence. For instance, 'i', ' n ' and 'A 1 all
occur free in tue above expression. Clearlv, if we change a free
variable we have changed the meaning of the expression:
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5m
i = l

i]

Notice that when we say that an occurrence of a variable is bound
or tree, we say this relative to some expression. p or instance,
;

j
' is tree in

but is bound in

n

1 = 1
i] and

Similarly, 'i' is free in the above expressions, but bound in

0L

i = l

D.

3=1 J

which is the
bound. This

The bindinq site of a variable determines its scope ,

region of the expression over which that variable is

region is usually indicated by some textual convention,
brackets or Darentheses. To state
occurrences of a variable which are in the scoDe of a bindina of
that variable are bound occurrences of that variable. The fol-
lowing figures exemnlitv these conceots:

such
things differently, a

as

binding
site of x

scope of

! x>y }

/ %
bound

ree occurrence ot y
occurrence of x

binding
site of :

scoDe

tree occurrence ot y
bound occurrences of x

As we have already seen, it is perfectly meaningful for scopes to
be nested within other scopes. Some examples of nested scopes
are shown below (the brackets indicating scooe are called scoping
lines) :
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>-

i=l
(i §. *<

j = l
ii)

—i

—

scooe of i

1

scooe ot 1

?x rv +xv dv dx

scooe ot y
j

scope ot x

We can summarize these ideas as follows:

* The binding site of a variable determines its scop e

.

* An occurrence of a variable is bound if it is in the scooe
of a binding site of that variable.

* An occurrence of a variable is free otherwise.

EXERCISES ;

For each variable occurrence in the following expressions,
indicate whether it is a binding site, a bound occurrence, or a

free occurence. Draw scooing lines to indicate the scooe of each
binding

.

1. { n I n>m }

2 . Tx sin fx/v) dx
V)

1 x
3. rxTsin(yx)dy dx

7) T)

OT^V
x
2+y 2

xv .

i=lj=l ^ 3i

*x[x«7 => 3y (yeZ A X=v+1 ) 1

7. {xlx>0} u (x|x<0) {xlx^O}

8. sinh(x)
,*--•**
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I . ? . d renaming bound var iables .

As we have seen, bound variables are arbitrary. This is one
reason they are often called d ummy variables ; they only serve to
establish a connection between parts of an expression. Bound
variables are the oronouns on mathematics.

Changing a bound variable to
chanqe the meaning of an expression

a
i-l 1]

both mean the sum of the j-th
change the bound variable to

and

column

another variable
For instance,

of the matrix A.

does not

Suooose we

1

2
,

This sums the diagonal of the matrix; we have altered the meaning
of the expression! We got into this trouble because we changed
the bound variable 'i

1 to the variable ']', which already
occurred within the expression. Thus, the occurrence of ' j' in
A-j became accidently bound. This is called a collision of vari-
ables . The conclusion that can be drawn from this is: we can
change a bound variable, throughout its scope, to another vari-
able only if the latter variable does not occur within that
scope.

EXEPCTSFS

For each expression determine whether the indicated change
of variable alters the meaning of the expression.

1. fx!x>y}; change x => z.

2. {x!x>y}; change x => y.

3. gL(x 3-xy) ; change x => t.

4. same; change x => y.

5. ¥x[3y (y>x) 1 ; y => x.

; v => x.

x —x
7. sinh(x) = e "*

.f ; x => u.

<ixOv

?j. 2
x -+v z

xy
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«. {m!m>el U {el sin(e)=0 >; e => m.

9. {x lx>0} u {y |v<0} ; v => x.

i => j.10. ? A • + §* R ^

i = l j=l i'

11. > i- > v j; ] => i.
1=1 3=1 J

1.2.5 function definition .

™hen bound variables are used
are often called formal parameters

f(x) =

in function definitions they
For examole, in

2^ 3x

'x' is the bound variable or formal oarameter. This is different
from the previous examples of bound variables in that the bound
variable and the function name are tied toaether. ^he lambda
calculus orovides a notation for functions which does not have
this problem. For instance, in the lambda calculus the function
f can be written

>x{x ?-3x}

(the X is
anv

a lambda), which can be read "that function which takes
x into x *3x." In the lambda calculus, if we have defined

= ,\x{x 2-3x}

and then we ask the value of 'f(5)', we can find it by substitut-
ing ' 5 ' for
start with

x' throughout its scone

f (5)

'ore specifically, we

when we substitute Ax{x 2-3x} for 'f ' we get

>x{x 2-3x} (5)

Now, we replace this expression by a cooy of the body of f
(namely x 2-3x) in which everv free occurrence of 'x' is reolaced
bv '5'

:

5^-3-5 25-15 in

This is called the "cony rule" for function evaluation because
the invocation 'f(5)' is actually replaced by a cooy of the body
of the function with its parameter textuallv substituted, i.e.
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'5 z-3*5'.

1.2.6 syntax ol the xambda caicuius .

The lambda calculus has a very simple syntax. Lambda
expressions are composed or the symbols '/

' ,
'

{
' ,

' } '
,

'
(

'
,

'
)

*

and variable names, put together according to the toiiowing
r uies

:

(1) In 'x' is a variable and 'E' is an expression or the
lambda caicuius, then '/x{E}' is an expression on the lambda cal-
culus, called an abstraction . We call 'x* the binding or the
abstraction and 'E 1 the body oi the abstraction.

(2) Ir 'P* and 'E 1 are expressions ol the lambda caicuius,
then 'F(E) ' is an expression ol the lambda caicuius, called an
appl ica t ion . We call 'F' the ope r a tor ol the application and 'E'
the oper and ol the application.

is
(3) IL

'(E)'.
is an expression ol the lambda calculus, then so

(4) 1l 'x' is a variable, then it is an expression ol the
lambda caicuius.

(5^ The only lambda expressions ate tnose described in (1)
to (4) .

To permit mote meaningtui examples, we will sometimes allow
additional types ol expressions within our lambda expressions,
such as conventional arithmetic expressions (e.g. '3+x').

The way in which we have described the syntax of the lambda
calculus will form a model for all later syntax descriptions. '* re

have enumerated a set of Primitives (the basic symbols and vari-
ables) and have described a set of constructors or formation
rules, which will yield ail the legal expressions of the language
when apoiied recursively to the Primitives.

EXERCISES :

which of the following are legal lambda calculus expres-
sions?

1. x

2. f(x)

3. >x{f(x)>
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4. (g)y

5. f (a) (b)

6. *x{£(x)} (a)

7. AxU(x) } ( /x{x} )

3. f g

9. lg(a)}

10. f{x}

11. f(>x)

1.2.7 semantics o t the lambda calculus .

In a previous section we informally discussed evaluation oi
expressions oi the lambda caxculus by the copy rule. In this
section this evaluation is denned mote exactly through two
t eduction rules :

1 ( r enaming ) : one expression may be reduced to another by
changing a bound variable throughout its scope to any other vari-
able that does not occur within that scope.

2 ( substitution ) : a subexpression oi the norm '/x{E} (A) ' may
be reduced by replacing it by a copy or E in which all tree
occurrences oi x are replaced by A, provided this does not result
in any tree variables or. A becoming bound.

We can restate the renaming rule as follows: An expression
'/x{E}* may be reduced by renaming to an expression 'Xy{F}' f

where F is obtained rtom S by replacing all tree occurrences or x

in E by y. This is only allowed it y does not occur in E. For
example, suppose we wish to rename x to u in '>x{ x~+2x+i 1 '

. We
do this by changing to u all rree occurrences or x in 'x +2x+I '

.

This yields '>u{u 2-2u+i} '. This reduction is symbolized:

Ax{x 2+2x+l} => /u{u 2 +2u+i}

Some other reductions permitted by the renaming rule are:

/x{x} => >a{a} => >g{g} => /r{r}
/x{>y{x(y)}} => M(>y{r(y)}} => M (>a { r (a) } }

/x{x+l} => /u{u+x}
/x{>y{x + y}} => >aUy{a + y}} => >a{>b{a + b}}

Lets consider an illegal aoolication of the renaminq rule in
order to better understand its restriction. Suopose we wish to
aoolv the renamino rule to
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f = >x{ e*x } = >x{ (2.71828.. .)x }

bv changing x to e. This is not allowed since e occurs in
'e - x'. We can see that if we did the substitution anywav we
would change the meaning of the expression:

f« = > e ( e-e } = >e{ e
2

I

Mote that f(l) = 2.71828... while f'(l) = 1; f and f are not the
same function. Renaming x to y, however, would not change the
meaning:

f
'

' = Xy{ e-y }; fl) = 2.7182*...

The renaming rule is generally needed only to avoid variable col-
lisions .

EXERCISES:

Apply the renaming rule as indicated, or state that its
application would be illegal:

1. A x (*l; change x => y.

2. /x{>,y{x+y}}; change y => x.

3. >x{t fx) 1; change f => g.

4. >d{d+e}; change d => e.

5. Ax{>y {x (y ) } } ; change x => f.

Next we will consider the substitution rule. The expression
'>x{x + l } (3) ' fits the form required by the substitution rule: it
is an application whose ooerator is an abstraction. Hence, we
can reduce it by replacing all free occurrences of 'x' in 'x+1'
by '3*. The result is '3+1'. Now consider

>x{ >yfx(y)l } (f)

This is an application whose operator is the abstraction

Axf Ay{x(y)} }

We can apply the substitution rule by replacing by 'f' all
occurrences of 'x' in '>y{x(y)}'. This produces:

Xy{f (y)

}

free
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To better understand the restriction on the substitution
rule, first consider this legal substitution: Suppose, as is

usual, that e = 2 .718 28 ... . Let £ = Ax {>y{x+y } } . Then we can
reduce f(2e)(l) as follows:

f(2e)(l) => >x0\y{x+y}}(2e) (1)

=> Xy{ 2e+y } (1)
= > 2e+l => 5.43. .. + 1 => 5.43...

Now lets look at a slightly different examole:

f*(2e)(l) where f = >d{>e{d+eH

We see that f' is the same function as f; we have just renamed x

and y to d and e. when we reolace f' by its value we qet

Ad{>e{d+ell (2e) (1)

which is an application whose operator is the abstraction:

>df>efd+ e }}

all tree
occurrences of 'e' in 'Ae{d+e}' by '2e'. ^ut, this is only
allowed if it does not cause a free variable of '2e' to become
bound. In this case a collision does occur, since 'e' is free in
'2e' but not in 'Ae{d+e}'. To see the reason for this restric-
tion we will go ahead and perform the substitution. The result
will be 'Xe(2e+e}'. This has changed the meaning of the expres-
sion; a fact we can see by evaluating:

/e{2e+e} (1) => 2*1+1 => 3

Hence, f ' (2e) (1) => 3

although we know the answer should be 5.43.... How do we avoid
this situation? Since bound variables are arbitrary, we simplv
rename the offendina bound variable. For instance, we can rename
'e' to 'c'

:

>d{>efd+e}} (2e) (1) => Xd (Ac {d+c } } (2e) ( 1)

which lets us proceed with the reduction:

/d{ >c{d+c} }(2e)(l) => >c{2e+c}(l)
=> 2e+l => 5.43. ..+1 => 6.43...

In fact, this is the major use of the renaming rule.

EXERCISES:
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Determine if the substitution rule is applicable to each of
these expressions. Tf so, reduce the expression by the substitu-
tion rule, first appiyina the renaming rule, if necessary.

1. >x{x(y)Wt)

2. >x{ >vfx (y) } } (y)

3 . f ( 3

)

4. ,\xf >yfx(y) 1 } ( >z{y (z) } )

5. Ay!yyH3)

5. >t { f (3)+f (4) } (g)

1.2.8 reduced form .

If and when an expression is reduced to the extent that the
substitution rule can no longer be applied to it, it is said to
be in reduced form . Intuitively, an expression is in reduced
form when it is an answer (i.e. it is done computing). The fol-
lowing table shows examples of both unreduced and reduced expres-
sions :

Not deduced Reduced

>x{xl fy)

Ay{f (y)} (a)

Ax* Ay{x(v)} } (f)

Ax{x} ( >xfx} )

>x{x(y) } ( >x{x(x) } )

y
f (a)

Ay(f (y)}
>x{x}
y(y)

In each case above, the expression on the right is the reduction
of the expression on the left. Not all expressions have a

reduced form. Consider the expression Y(Y) , where Y = Ax{x (x ) } :

Y(Y) => >x{x(x)}(Y) => Y(Y) => ...

This is the lambda calculus equivalent of an infinite loop.

EXERCISES :

Decide if each of the following expressions is in reduced
form. If not, then reduce it to reduced form.

i. Aft f (3)+f (4) } ( Ay{yyJ )

2. f ( Ax{x+x} )
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3. >x{x<o) ( >x{x+l} )

4. >x(x<0} ( ,\x{x + l} (2) )

1.2.9 multiple parameters and other abbreviations .

The lambda expressions we have defined have only one bound
variable. We can get the effect of two bound variables by nest-
ing the lambda expressions, for instance:

>x{>y{x+y}} (3) (1)
= > > y n+yHi)
=> 3+1
= > 4

Recause such nested lambda expressions are so common, we allow
the following abbreviations (using ' =>

' also as a sign of abbre-
viation) :

Axy{x+y} => Ax{>y{x+vU
F(3,l) => F(3) (1)

These abbreviations are the usual method of handling multi-
argument functions in the lambda calculus. Of course, it is not
normally necessary to think of these as abbreviations; we just do
the multinle parameter substitutions directly, e.g.,

if f = >xy{x+yl
then f (3,1)

= > >xy{x+y} (3,1)
=> 3+i => 4

In exactly the same way we will allow substitutions involving any
number of parameters, including none.

>abc{ax 2+bx+c} (9 ,6 ,1) => 9x 2 + ^x + l

>{m+l} () => m+1

As we have seen in some of the previous examples, lambda expres-
sions can get quite large. In order to be able to program signi-
ficant functions in the lambda calculus we will need a way of
attaching names to lambda expressions. Therfore we will allow
rewriting rules of the form:

plusp => >xfx>0}
minusp => >x{x<0}
succ => >x{x+l}
square => Xx{x*x}
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Then we can write, for instance,

minusp (succ (2)

)

= > >xf x<0t (succ (2)

)

succ (2) <0
>x{x+l} (2) <0
2+KO
3<0

= >

= >

= >

= >

false

1.2.10 the Church ^ Rosser property .

In the above reduction we reduced the outermost: aodication
first. We need not have done this, for instance,

minusp (succ (2)

)

= > minuspOx{x + l} (2) )

=> minusp(2+l)
=> minusp (3)
=> >x{x<0}(3)
= > 3<0
=> false
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STANDARD REDUCTION ORDER:
(by substitution) only if
in reduced form.

An application is reduced
its arouments are alreadv

EXERCISE : Reduce to reduced form:

Xt {succ (f (2)+f (3) ) } Ox {square (x)+2})

EXERCISE : Suopose the following definitions are given
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Zero => >fc{cl
One => >fc{f(c)>
Two => Xfc{f(f(c))}
Three => >fc{f (f (f (c) ) )

}

SUPl => >MN{>fc{M(f ,M(£,c) ) M

then, reduce to reduced form ' sum (Two , One) ' . what is this equal
to? If you wonder about the motivation for these definitions,
then try reducing 'Three (succ , )

' and ' Two (succ , 3 )
'

.
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Chapter 3

I . 3 Th e Extended Lambda Calculus.

1.3-1 Conditionals .

The lambda-calculus, as we have been using it so far, is not
very useful; it is only possible to define functions that evalu-
ate strictly in order: there is no decision making ability.
Therefore we would like to define a function 'if such that
if(c,t,f) => t if c is true and if(c,t,f) => f if c is false.
Hence, 'true' selects *

t
' from (t,f) and 'false' selects 'f from

(t,f). One way to do this is to define 'true' and 'false' so
that true(t.f) => t and false(t,f) => f. Thus:

true => >tf|t
false => Atfjf

Then we want if(c,t,f) => c(t,f), where c reduces to true or
false, so

if => >btf|b(t,f)|

To see how this works, suppose 'x=y' returns 'true' if x equals j
and 'false' otherwise. Then

if( 2=0, 25, 37)
=> if( false, 25, 37)
= > Abtf{b(t,f)l ( false, 25, 37)
=> false( 25, 37)
=> >tf{f}( 25, 37)
= > 37

[Text we will program the logical connectives: 'and', 'or' and
'not'. Not is the simplest since it just negates a truth value:

not (true) => false
not(false) => true

That is, if x is true then not(x) is false, otherwise not(x) is
true. This can be directly translated to the lambda calculus:

not => Ax[ if( x, false, true ) }

The 'and' function is defined so that and(x.y) is true only if
both x and y are true. This is summarized in the following truth
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table:

AND true false
true true false

false false false

We can see that if x is true then and(x,y) has the same value as

7, and that if x is false then and(x,y) is false regardless of
the value of y. We can translate this directly into the lambda
calculus

:

and => \xy{ if( x, y, false ) }

EXERCISE: Define 'or' so that or(x,y) is true if and only if x or

y or both are true. That is, 'or' must satisfy the truth table:

OR true false
true true true

false true
.. .... ....

false

Show that your definition works by reducing ' or (false, true) '

.

1.3-2 Recursive Definitions .

Now that we have a conditional, we can define some more
useful functions. The factorial function is defined so that

4!

3!
0!

= 4*3*2*1 = 24
= 3"2'1 = 6

= 1

or in general,

n! n(n-1 )(n-2)...(2)(l

The factorial can also be defined recursively as foil ows :

1 ,

f n-n=0
n(n-1 )

! , if n>0

Using the conditional it is now easy to define a function ' fac

'

such that fac(n) = n!

.

fac => Xn{ if( n=0, 1, n fac(n-1 ) ) I

Consider the computation of fac(2):
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fac(2)
=> >n{ if( n=0, 1, n*fac(n-l))

} (2)
= > iff 2=0, 1 , 2*fac(2-1 ))
= > if ( false, 1 , 2*fac0 ))
=> 2*fac(l)
= > 2 * >n{ iff n=0, 1, n*fac(n-l)) I (1)
= > 2 * iff 1=0, 1 , 1*fac(l-1 ) )

=> 2 * 1 * fac(0)
=> 2*1 * \n\ if( n=0, 1, n*fac(n-l)) | (0)
=> 2 * 1 * if ( 0=0, 1, 0*fac(0-l))
=> 2 * 1 * if ( true, 1, 0*fac(-O)
=> 2*1*1
= > 2*1
= > 2

To keep the above reduction readable, most of the reductions
associated with 'if have not been shown. Notice that in the
fourth to the last line (the last line with an * if in it) if we
had decided to reduce the argument formula 0*fac(-l) we would
have started a never-ending recursion. That is,

:(0-D)
0*fac(-1 ))

* An | if( n=0, 1 , n*fac(n-1 )) j
(-1 ))

* iff -1=0, 1

,

n=0, 1 , n*fac(n-1 )) } (-2) )

)

* iff false, 1

,

-1 * if( -2=0, 1, -2*fac(-2-l) )))
= >

This process may never terminate! What the Church-Rosser pro-
perty really says is that two different reductions of a formula
give the same result provide d they both terminate . For this rea-
son we avoid evaluating any arguments of 'if that we don't have
to.

Since 'if is such a common function, we will introduce a
special notation for it. This is just an abbreviation, it really
adds nothing to the lambda calculus. Such abbreviations are
often called "syntactic sugar" (because a little "syntactic
sugar" helps one to swallow the lambda calculus). For simple
|' if s, such as if(b,t,e) we will write [b->t|e], which is read:
"if b then t else e." For nested 'if s, such as if(b, t, if(c, u,

2 *
1

+ if( 0=0, 1 , 0*fa
= > 2 *

1
* if ( true , 1 ,

= > 2
-*

1
* if ( true , 1

,

= > 2 *
1

* iff true, 1
,

-1 * >n{ if(
= > 2 *

1
* if ( true, 1 ,

ie ) ) we will write

[ b -> t
I

c -> u t e ]

and so forth. This can be read "if b then t else if c then u
else e". Using this notation the factorial function can be
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written

fac

1.3-3 Primitives

=> An |
[n=0 -> 1 | n'fac(n-l) ]

We have seen that it is possible to define in the lambda
calculus Boolean values (true and false), logical connectives,
'if expressions, arithmetic (sum), and even numbers themselves.
This should lend some credibility to the statement made earlier
that anything that can be done on a computer can be done in the
lambda calculus. For our purposes, there is not much point in
carrying this exercise any further. In the future, any
application-oriented functions that we might need (such as arith-
metic) will be introduced as extensions to the lambda calculus.
For instance, the arithmetic operations might be introduced by a
set of rules like:

sumO ,1 ) => 2

sum(l ,2) => 3

or in general

sum(m,n) => m+n

This way we have an application independent language framework
formed by the lambda abstraction and function application syntax,
and a flexible set of application depende nt primitive operations
which we can define as the need occurs. Notice that again we are
breaking the language down into primitive s and constructors . In
the next section we will build a list processing language by com-
bining the constructors of the lambda calculus with a set of
powerful list processing primitives. We will find that many
apparantly different programming languages are really just
sugared versions of the lambda calculus with some application-
oriented primitives added. The following chart shows some primi-
tives that might be included in languages intended for numerical,
list processing, string processing and data processing applica-
tions .
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language constructors primitives
application

1
independent

application
dependent

numerical Ax{il}, fUJ integers, reals,
+, -, x, /, ...

list processing >,x{E! , f(a) lists, atoms,
first, rest, cons, ...

string processing Ax|EI, f(a) strings, characters,
substr, concat, match, ...

data processing Ax|E|, f(a)
! files, records,
move, read, write, ...

1 .3 -4 Data Types .

When we extend the lambda calculus with new primitives we
will always do it by defining a set of data values and a set of
primitive operations on those values. Any operations we wish to
perform on the data values must be constructed from the primitive
operations. The term data type is used to refer to a set of data
values together with a set of primitive operations on those
values. For instance, the data type integer is the set of
integer data values:

... _3 _p -1 1 2 3 ...

together with the primitive operations on those values, e.g.,

+, -, x, /, =, £, < , >, <

,

Any other operation, e.g. squaring, must be constructed from
given values and primitive operations:

;he

square = \n nxn

Similarly, the Boolean data type is composed of the Boolean
values

:

true, false

together with the primitive operations on these values:

not, and, or, if, =, 4-

1.3-5 The List Data Type .

In this section we will define the list data type. The data
values are called lists and are written as sequences of values
surrounded by angle brackets. For instance,
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<5 3 16>

is a list containing the integers five, eight and sixteen, in

that order. Lists can have any number of elements, including
one

:

<32>

This is the list containing only the integer 32. Lists can also
be empty, i.e., have no elements:

<>

This is called the null list . Lists can contain any data values,
for instance,

<5 'cat' false 1 .6>

is a list whose first element is the integer five, whose second
element is the string 'cat', whose third element is the Boolean
value false, and whose fourth and last element is the real number
1 .6. Lists can also contain other lists, for instance,

<5 <9 32> 8 16>

is a list whose first element is the integer five, whose second
element is the list <9 32>, whose third and fourth elements are 3

and 16. Lists can be nested in this way to any depth.

We will define three important primitive operations on
lists. The function 'first' returns the first element of a list,
e.g. .

first( <5 8 16> ) => 5

first( <<1 2> <3 4>> ) => <1 2>

In the second example notice that the first element of <<1 2> <3
4>> is the list <1 2>. It makes no sense to apply 'first' to the
null list or to an atom , which is what we call things that are
not lists:

firstf <> ) is meaningless
first( 18 ) is meaningless

Null lists and atoms don't have a first element.

A complementary operation to 'first' is 'rest', which
returns all of a list except the first element, e.g.,
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rest( <5 3 15> ) => <S 16>
rest( <<1 2> <3 4>> ) => <<3 4>>
rest( <3> ) => <>

It makes no sense to apply 'rest' to null lists or atoms:

rest( <> ) is meaningless
rest( 13 ) is meaningless

The 'first' and 'rest' operations take lists apart; we need
another operation to put them together. This is 'cons' (short
for "construct"), which makes its first argument the new first
element of the list which is its second argument. For instance,

cons( 5, <3 16> ) => <5 3 16>
cons( <1 2>, <<3 4>> ) => <<1 2><3 4»
cons( <5>, <3 16> ) => <<5> 3 16>
cons( 5, <> ) => <5>

Notice that the first argument to 'cons' does not have to he an
atom, although its second argument does have to be a list:

cons( 5,8) is meaningless

The meaning of 'first', 'rest' and 'cons' is summarized in the
following formulas. In these, 'x' represents any data value.

first( <x . . .> ) => x
rest( <x . . .> ) => < . . .>

cons( x, < . . . > ) => <x . . .

>

These operations can be combined, for instance,

first( rest( <5 8 16> ) )

=> first( <3 16> )

= > 3

Hence, f irst ( rest (L) ) is the second element of L.

The 'cons' operation is the inverse of 'first' and 'rest'.
For example, since

first ( <5 3 16> ) => 5, and
rest( <5 3 16> ) => <8 16>, and
consj 5, <3 16> ) => <5 3 16>

we 3ee that
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cons( first (<5 S 16>), rest(<5 8 16>) )

=> cons( o , <3 1 5> )

=> <5 S 16>

Thus, the following identities hold (where L is a list and x is

any value )

:

f irst ( cons(x,L) ) = x
rest ( cons (x ,L) ) = I
cons(first (L) , rest(L) ) = L, if I is non-null

Another primitive that will he useful to us is the equality rela-
tion. For instance,

5=5 => true
5=6 => false

The equality relation is only defined for atoms (e.g., numbers,
strings and Boolean values); its use on lists is meaningless:

5=<6> is meaningless

The meaning of the equality relation is summarized "by the follow-
ing formulas, in which 'a' and 'V represent different atoms:

a=a => true
a=b => false

There are only two other functions that we need to do useful list
processing. These are 'null', which asks if a list is empty, and
'atom', which asks whether something is a list. For instance,

null( <> ) => true
null( <5 B 16> ) => false
null( <<>> ) => false

The list <<>> is not null because it contains a single element,
namely, the null list, <>. The 'null' function is not defined
for atoms:

null(5) is meaningless

.lull is defined by the following formulas, in which x is any
value

:

null( <> ) => true
nullf <x . . .> ) => false

The 'atom' function determines whether a value is an atom or a
list, for example,
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atom( 5 ) => true
atom( <5 3 16> ) => false
atom( <5> ) => false
atojn( <> ) => false

The 'atom' function, which is meaningful when applied to any
values, is defined by the following formulas, in which 'a'
represents any atom:

atom( <...>) => false
atom( a ) => true

The list data type is summarized in the following figure.

Data Values:
atoms: 1, 2, .... 'cat', 'hat', ..., true, false,
lists: <>, <1 'cat'>, <'call' <

' var ' 'f> 23>, --

Primitive Operations:
first( <x . . .> ) => x
rest( <x . . .> ) => < . . .>

cons( x, < . . . > ) => <x . . .

>

a=a => true
a=a' => false

null( <> ) => true
null( <x . . .> ) => false

atom( a ) => true
atom( <...> ) => false

where a is an atom and x is a list or an atom.

Figure 1 . The List Data Type

1-3-6 Recursive Problem Solving .

In order to better understand these list processing opera-
tions, a number of examples will be presented. First we will
define a function 'sub' such that sub(L,i) is the i-th element of
the list L. For instance,

sub( <5 S 16 25> , 3 ) => 16
sub( <5 <9 32> 16>, 2 ) => <9 32>

since <9 32> is the second element of <5 <9 32> 16>. How are we
going to program this function? The way to solve problems like
this is to ask what subcases of the problem are already solved.
In the case of 'sub' this is fairly easy, since by definition
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'sub(L,l)' is just the first element of L. That is,

sub(L,1 ) = > first(L)

The next step in solving a problem such as this is to find some
way to reduce the general problem to the subcases that are
already solved. Notice that

sub( <5 3 16 25>, 3 ) => 16
sub( <S 16 25>, 2 ) => 16

Hence

,

sub(L,i) => sub( rest(L), i-1 )

We have reduced the original problem, sub(L,i), to one that is
closer to the solved problem, sub(L,l), since i-1 is closer to 1

than i is. We now have two cases, just as in the factorial exam-
ple :

sub(L,i) => first(L)

,

if i=1
sub(L,i) => sub( rest(l) , i-1 ), if i>1

This is easily translated to the lambda calculus:

sub => Ali| [ i=1 -> first(L)
I

sub( rest (L) , i-1 ) ] }

We will try this on sub( <A B C D> , 3):

sub(<A 3 C D>, 3)
=> >Li| r i=l -> first(L) | sub(rest(L) , i-1 ) ] }(<A B C D> , 3)
= > r 3=1 _> first(<A 3 C D>) | sub(rest(<A 3 C D>),3-1) ]

= > sub(<3 C D> , 2)
=> [ 2=1 -> first(<B C D>^ | sub^rest(<3 C D>),2-1) ]

=> sub(<C D>, 1

)

=> r 1=1 -> first(<C D>)
I
sub(rest(<C D>), 1-1) ]

=> first(<C D>)
= > C

The 'sub' function is so useful that we will adopt a special
"array subscripting" notation for it:

A[i] => sub(A,i)

Thus, A[1] and first(A) are the same.

Next we will define a function 'append' such that
append (L,M) concatenates the lists L and M. That is,

append(<1 2>, <3 4 5>) => <1 2 3 4 5>
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Note that this is different from oons(<1 2>,<3 4 5>) which would
give us <<1 2> 3 4 5>- We will use the same problem solving
technique that we used with 'sub' by asking: What cases of
'append' are immediately solvable? Those in which one of the
lists to be appended is null, for instance,

append( <>, <4 5 6> ) => <4 5 6>

In general,

append( <>, L ) => L
append( L, <> ) => L

Next we must investigate how the general problem can be reduced
to either of these two cases. For instance, since we know
append(<>,L) is L, we can work on reducing the first argument to
an empty list. Suppose we wish to simplify

append( <2>, <3 4 5> )

We know

apaend( <>, <3 4 5> ) => <3 4 5>
cons( 2, <3 4 5> ) => <2 3 4 5>

so we can see that

aupend( <2>, <3 4 5> )

=> cons( 2, <3 4 5> )

=> cons( 2, append( <>, <3 4 5> ))

Now let's consider a more complicated example:

append( <1 2>, <3 4 5> )

We already know how to do

append( <2>, <3 4 5> ) => <2 3 4 5>

so all we have to do is reduce the new case to this:

aiDpend( <1 2>, <3 4 5> )

=> cons( 1 , <2 3 4 5> )

=> cons( 1, append( <2>, <3 4 5> ))

Summarizing, we have

apiDend( <1 2>, <3 4 5> ) => cons( 1, avven&i <2>, <3 4 5> ))

appendf <2>, <3 4 5> ) => cons( 2, append( <>, <3 4 5> ))
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It should be apparent that the general case is

append(x,y) = cons( x[l], append( rest(x), y ))

Summarizing, we have the two cases:

append (x,;7) => y, if x is null
append(x, y) => cons(x[l], append ( rest ( x) ,y) ) , if x is non-null

This can be easily translated to the lambda calculus:

append => Axy{ [ null(x)^-> y
j cons( x[l], append ( rest(x), y)) ] }

We will find that all recursive definitions fit this pattern: (1)
a stopping condition that forms the base of the recursion and (2)
a recursive invocation of the function in which the problem is
reduced to a simpler problem. In list processing the stopping
condition often takes the form 'null(...) T

,
just as in numerical

functions it often takes the form '...=0'. You probably will
recognize a similarity between recursive functions and mathemati-
cal proofs by induction. This similarity simplifies prooving
that recursive functions are correct.

It should be mentioned that if we had decided to reduce the
second argument to the null list rather than the first, we would
have found the going much tougher. The list processing primi-
tives favor working on the beginning of a list, hence the first
argument of 'append'. This sort of intuition comes from practice
with using the primitives.

Although it is relatively easy to prove that 'append' is
correct, we will convince ourselves bv working the reduction of
append(<1 2>,<3 4 5>)

•

aT3T)end(<1 2>,<3 4 5>)
=> [ null(<1 2>) -> <3 4 5>

= >

= >

I
cons( <1 2>[1], append( rest(<1 2>), <3 4 5>)) ]

cons(l, aoioend(<2> , <3 4 5>))
consO , r null(<2>) -> . . .

I
cons(<2>M ] ,ai)pend(rest(<2>) ,<3 4 5>))]

cons(2, aoT3end(<>, <3 4 5>) ))

cons(2, FnulKo) -> <3 4 5> I
••• ] ))

cons(2, <3 4 5> ))

= > cons( 1
,

=> cons (
1

,

= > cons( 1
,

=> consO , <2 3 4 5> )

=> <1 2 3 4 5>

As final example, we will define the function 'equal' which
returns 'true' if its two arguments are equal atoms or lists
(i.e. have the same structure). (Recall that '=' only works on
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atoms, hence it cannot be used to compare lists.) That is

equal( <5 <B 16> 25>, <5 <3 16> 25> ) =>
equal( <5 <S 16> 25>, <5 <3> 16 25> ) =>

true
false

As in the previous examples, the stopping point of our recursion
will be those cases that we can already solve. Then, we will
attempt to reduce the general case to these simpler cases. A
good place to begin in any list processing problem is the null
list, and this is the case here; all null lists are equal:

equal ( <>, <> ) => true

Another good place to begin in list processing is with atoms.
This is particularly true in this case, since the '=' relation
can be used to test equality of atoms. For example,

equal (5 ,5) = > 5 = 5 = > true
equal ( 5,6) = > 5=6 = > false

These cases can be written more generally:

equal(x,y) => true, if x and y are both null
equal(x,y) => false, if x or y is null, but not both

equal(x,y) => true, if x and y are atoms and x=y
equal(x,y) => false, if x and y are atoms and x^y
equal(x,y) => false, if x or y is an atom, but not both

It remains to reduce the general case to these solved cases.
Consider ' equal( x,y

)

'
, where x and y are non-null lists (if they

aren't then the problem is solved). Now, if x and y are non-null
lists, what are the conditions that must be satisfied to make
them equal? Clearly, they must have the same number of elements
and each of their elements must be 'equal'. Since both lists are
non-null we know that they both have a first element. Hence, we
can compare the first elements with 'equal', delete them from the
lists and then compare the rest of the lists with 'equal'. This
is the simplification:

equal(x,y) => equal( x[ 1 ] ,y[ 1 ] ) and equal( rest ( x) , rest (y) )

,

if x and y are non-null lists.

Putting our results together allows a direct translation to the
lambda calculus:
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equal => X xj\
[ atom(x) ->

[ atotn(y) -> x=y
I
false ]

atom(y) -> false
null(x) -> null(y)
null(y) -> false
equal(x[ 1 ] ,y[ 1 ] ) -> equal( rest ( x) , rest (y)

)

false !

The 'atom' tests are done first since they work on all values
(atoms and lists) while 'null' only works on lists.

EXERCISE : Write out the reduction of equal(<5 <S 16> 25>, <5 <8
1 6> 25>)

•

EXERCI_SE: Define the function 'member' such that member(x,y) is
true if and only if x is an element of the list y. That is
member(C, <A B C D>) => true, but member(C, <A <B C> D>) =>
false. To show that your definition works, reduce member(7, <3 5

7 9>) •

EXERCISE : Suppose y is a list of pairs, i.e. it has the form

<<a, b,> < • <a„ b„>>l^ u-| / va
2

bp> - - • -~n »n .

Define the function 'assoc(x,y)' to be the first b^ for which
x=a^ . ?or instance,

assoc( 'V, <<*a' 1> <*b' 3> <*C 5>> ) => 3

assoc( 7, <<1 0> <7 9> <2 5> <7 3>> ) => 9

EXERCISE : Suppose x and y are lists of the same length and a is a
list of nairs. For instance,

X = <X.j Xo V
7 = <7

1
72 •

•

' 7^>
a = <<b^ c-| Xbp c 2 > <*n cn»

Define ' pairlis(x,y , a) ' to be the list resulting from adding the
pairs <x^ y^> to the front of a, e.g.,

« X1 71 > ••• <xm ym> <b
1

C1 > •• <b
n c n>>

EXERCISE : Write the list processing primitives (first, rest,
cons, atom, null) using linked lists in Pascal or some other
language you are familiar with.

I-3-7 Syntactic Sugar .

With the list processing primitives we really have a small,
but usable, programming language. In fact, the language we have
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is very similar to the list processing language LISP, which we
will be discussing later. To make the programming language
aspects of the lambda calculus more obvious we will "sugar" it
with an Algol-style syntax. First, we will replace 'V with
' proc ' (for 'procedure'), we will write the bound variables in
parentheses separated by commas (i.e. ' xy ' becomes '(x,y)'), '{'

and '}' become 'begin' and 'end', '[' and become 'if and
'end if ,

'->' becomes 'then' and '|' becomes either 'elsif or
'else'. When we make these substitutions in the 'equal' function
we get:

Equal => p_roc(x,y)
begin

if atom(x) then
if atom(y) then x=y else false end if

el si f atom(y) then false
elsif null(x) then null(y)
alSJJL null(y) then false
elsif equal(x[l], y[lj) then equal ( rest(x), rest(y))
else false
endif

end

These conventions are summarized in the following diagram.

Axy
! r !

->

!

]

We will use the acronym 'ELC' to refer to the extended lambda
calculus , i.e. to the pure lambda calculus extended by the
integer, Boolean and list data types and extended by the syntac-
tic sugar introduced in this chapter.

ELC is quite similar to the programming language LISP.
Approximate equivalences are shown in the following chart (the
differences are fairly subtle and are discussed in a later
chapter)

.

= > proc(x,y)
= > begin . . . end
=> if
=> then
=> else or elsif
=> endif
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LLC LIS?

f(a,b) (f a b)

\xj{...\ (LAMBDA (x v) . . . )

<1 <2 3> 4> (QUOTE (1 (2 3) 4)
first(x) (CAR x)

rest ( x) (CDR x)
cons ( x ,y

)

(CONS x y)
[ c -> ...

i
... ] (COND (c . . .) (T . . .))

x=y (SQ x y)
true np

false NIL

The LISP program corresponding to our 'equal' function is:

(equal (lambda (x y)
( cond

( ( atom x) (cond
( (atom y) (eq x y)

)

(T NIL)) )

( (atom y) NIL)
( (null x) (null y))
( (null y) NIL)
((equal (car x) (car y)) (equal (cdr x) (cdr y)) )

(T NIL) )))

You can now see that languages can have very different appear-
ances even though they are the same underneath. We will find
that most programming languages are sugared versions of the
lambda calculus.

1.3.3 local declarations in mathematical prose . If a mathemati-
cian were to write an expression such as

/ ax+b_g\ m+n-2

t ax+ D \

m

k—X~~
)

he would probably factor out the common subexpression

ax+b

and give it a name, say 'u'

(u-a) m+n
"2

urr

^r

where u = ax+o

This has two advantages. First, it reduces the size and complex-
ity of each expression so that they can be more easily assimi-
lated by the eye. Second, by using the same variable 'u' in both
places it makes it more obvious that it is the same identical
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expression in both places. Now, we can accomplish the same thing
in the lambda-calculus. In particular,

reduces to

K'-r2

} (*?*)

/ax+b_
a

\ m+n-2

ax+fci—rr

1.3-9 local declarations in the lambda calculus
notation will be defined as a "syntactic sugaring" of function
application:

3 where v=x => >v{E}(x)

For instance, an expression such as this (which is taken from the
interpreter discussed later)

:

eval( f[l][2], append( f[2], cons(x,<>) ))

could now be written

eval( f[l ][2] , NewSnv )

where NewEnv = append( f[2], cons(x,<>))

By analogy with functions of several arguments, it is possible to
allow compound "where" declarations:

E where v<=X| and v
2
=x 2 a?^ '*'

= > >v
1
v
2

-
• • !sTTx

1
,x 2 , • .Tf"

For instance, the expression fragment

elsif e[l] = War 1 then a[e[2 ] ] [ e[3 ] ]

can be more readably written

elsif e[l] = ' var ' then a[ep][vp]
where ep = er2]
and vp = e[3j

There is another way in which mathematicians use variable names.
If a mathematician is going to use an expression in a number of
following lines then he will often give it a name with a phrase
such as "Let u be ax

^
. " This style of definition is easily

defined in the lambda-calculus:
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let v=x in E => >v{EJ (x)

or in general

let v-| =x.j and v-^x? and
= > Av

1
v2 -^TE}fx 1

[ V9=Xp and • •

•

"Slfx^xo, . . . )

m &

Whether 'let' or 'where' is used is largely a matter of taste and
style. In general, 'where' is appropriate when 'S' is one line
or less and 'let' is appropriate when 'E' is more than one line.
As an example of 'let', the ' expression fragment

elsif eh ] = 'call' then
apply ( eval( e[2], a), evlis( rest ( rest ( e) ) , a) )

can be written

elsif e[l ] = 'call' then
let closure = eval(e[2],a)
and actuals = eval( rest ( rest ( e) ) , a) in

apply( closure, actuals )

The use of names such as 'closure' and 'actuals' makes the pro-
gram more readable, albeit, more verbose.

1-3-10 terminology It will be recalled that in the abstraction
'J\xjsj' the scope of 'x' was defined to be 'E'. By analogy, the
scope of the variables defined by a 'let' or a 'where' is defined
to be the body of the corresponding abstraction. Eor instance,
in the previous example, the scope of 'closure' and 'actuals' is
the following line. To put it another way, the scope of a vari-
able is the region of an expression over which it has meaning.
This is shown in the following diagrams:

-scope o:

let v=x in E

V

j

Consider the following 'let' or 'where' expressions:

E where v^ =x^ and V2 = Xn and • •

•

let v^ =x.j and v? = xp and • • • in E
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The ' v
j_

= x
i'

parts of these are called definitions , declarations
or bindings (because they bind a bound variable to its value )

.

The 'let' and 'where' constructs themselves are called blocks
(particularly in languages that delimit them with begin-end
pairs). These constructs occur in most languages although in a
variety of forms. For instance, the Algol-68 block

begin i = 3 ; j=m+1

;

i/j
end

means the same as the lambda-calculus block

let i = 3 and j=m+1
in i/j

In languages that use begin-end pairs to delimit blocks, like
Algol-68, the declarations ('i=3; j=m+1 ' in this case) are col-
lectively known as the head of the block, and the rest of it is
known as the body of the block. Thus,

.-bindings (definitions, declarations)

/ begin i = 3; j=m+1 ; i/j end
f i 1 i i

block block head block body

A set of Pascal declarations such as

function g(y: integer ) : integer;
const i=3;
function f ( x: integer) : integer;

begin f := x*i+1 end;
begin g := f(y)+1 end;

begin . . . end

means the same as the lambda expression

let g = proc(y) begin
let i=3 in

let f = proc(x) begin x*i+1 end in

f(y)+1 end
in ...

Of course, it is necessary to specify types in Pascal declara-
tions, but not in lambda-calculus bindings.

As a final example of blocks in the lambda-calculus, con-
sider the lambda expression
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>i{ Xf\ *i{f(i)}(2) }( >x|x*ij ) }(3)

'he meaning of this expression can be clarified "by using blocks:

let i = 3 in
let f = proc(x)( x*i } in

let i = 2 in
f(i)

Although there is no exactly corresponding Pascal program, this
lambda expression can be translated into Algol-68:

begin i = 3;
begin f = proc (x: int ) int : (x*i);

begin i = 2;

f(i)
end

end
end

1-3-1 1 compound declarations Consider the two expressions

let v« = e< in let v = eo in e1~ c
1

scone oi v

2
_c 2

scope of vp

!

3

let v^ = e< and vp = e? in e^

scope of both v^ and Vp >

The second of these, which is called a comnpound declaration , is
much more than merely a shorthand form of the first. Observe
that in the first expression ep is within the scope of Va ,

whereas in the second expression the scope of both v. and v is
just e-r • ?or instance, while

let i=3 in let x=A[i] in E

has the same effect as

let x=a[3] in 3

the expression

let i=3 and x=a[i] in B

is illegal (i.e. doesn't make any sense), unless, of course, 'i'
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is bound in some surrounding scope. This can be seen more
clearly by translating the two expressions back to pure lambda
notation. The first becomes:

bound occurence of '

i

'

Ai{ Ax{3}( A[i]
i i

scope of 'x

(3)

scope of '

i

'

which is correct, and the second becomes

Aix{B|( 3, A[i]

scone of and unbound occurence of ' i '

which is not. The most important use of compound declarations is
in connection with recursive declarations, discussed next.

1.3-12 recursive declarations Consider a declaration such as

let fac = proc(n){ [n=0 -> 1 ! n*fac(n-l)] }

in B
j

scone of ' fac

'

V.

This is illegal, as we can see by putting it in pure lambda nota-
tion:

Afac{3}( \n{ Tn=0 -> 1
|
n*fac(n-l)] j )

scope of 'fac' unbound occurence of 'fac'

The recursive occurence of 'fac' is unbound. This is because the
value on the right of a binding is evaluated in the surrounding
environment. This is clearly an unsatisfactory situation.
Although there are ways of handling recursive definitions in a
purely applicative way, they involve complicated mathematics and
so will not be discussed here. Instead, the technique to be used
will require some of the imperative facilities discussed in the
next chapter. Although the actual technique to be used will not
be described until the next chapter, recursive definitions will
be used in this chapter.

A declaration of the form
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let rec v=e in B

scope of 'v'

is called a recursive declaration
because the scoiDe of ' v' includes

or definition
Therefore

or

use of 'v'

defined so
Similarly, compound recursive declarations

that in

let rec v^=e^
and rec Vp=e2
and m

"V.

the scopes of
definition o^

scope of v^ , V2

binding)
can make
will be

f V|, Vp, ••• include e^ , $2 > ••• • This allows the
f mutually recursive functions, for instance:

Sval = proc(e,a)| ... apply( . . . ) ...
}

Apply = proc(f,x){ ... eval(...) ...
}

let rec Eval = proc^e,a
and rec Apply = proc(f,x)
in . .
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Chapter 4

I . 4 Implementing The Lambda Calculus

1.4.1 goals defined .

You have probably found reducing lambda calculus expressions
to be a tedious and error-prone process. These characteristics,
plus the fact that reduction is a mechanical procedure, makes the
computer the ideal tool for doing these reductions. There are
several reasons for this. When peoole work for a long time at a

mechanical task, they become tired and begin to make mistakes.
Computers aren't like that: once programmed correctly they will
perform a task without fatigue. Another advantage of using com-
puters to do reductions is that they can do them so fast. The
mechanical, symbolic processes of a calculus are exactly what
computers handle best, since a computer is just a very fast sym-
bol manipulator.

Why are we so concerned about reducing lambda exoressions,
anyway? As you've seen in the orevious chapter, languages with
very different appearances are often just "sugared" versions of
the lambda calculus. You've also been told (and you will see it
in Part II) that most common programming languages are, under-
neath, just the lambda calculus. Therefore, if you study how to
implement the lambda calculus, you will be learning how to imple-
ment most of the common programming languages. The advantage of
using the lambda calculus, as opposed to Pascal or Ada, for
instance, is that the lambda calculus is so simple. The imple-
mentation techniques are much easier to understand in the clear
and uncluttered context of the lambda calculus. Once understood,
they are easy to extend or modify so that they accomodate the
complexities of "real" languages.

1.4.2 mechanical reduction

Having established that imolemenat ion of the lambda calculus
is important, we can proceed to study how we might go about it.
The obvious aporoach is to write a program that duplicates our
hand reduction procedures. This is easier said than done, how-
ever .

Let's investigate how we might go about automating the
reduction process. When we reduce a lambda expression using the
Standard Reduction Order, we do it by applying the substitution
rule over and over, until we are forced to stop by an immanent
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Another reason to avoid a mechanical implementation of the
reduction procedure is that it would be slow. As you've probably
observed in your own reductions, this process involves a lot of
recopying of the formulas. This is something that most computers
don't do well. For these reasons we will investigate an imple-
mentation that involves neither textual substitution nor a com-
plicated coll ision-of-var iables test.

1.4.3 context

Let's take another look at the way people use variables.
Suppose a mathematician reads a phrase such as, "Let 9 = 2ltft."
what happens when he later reads a formula such as
"2sin 6 cos 9"? Does he mentally transform this into

2sin(2ifft) cos(2i»ft)

by performming the substitutions? Of course not. Having been
told "Let 9 = 2iTft", he remembers this fact and associates 9 with
2lfft. we say that he has bound 9 to 2lTft. When he reads the
formula "2sin 9 cos 9" he interprets it contextually , i.e., in
the context of the relevent meanings of 2, sin, cos and 9. It is
not necessary for him to do a textual substitution.

You will remember that the reason for the collision-of-
variables restriction on the substitution rule was to prevent
altering the meaning of an expression by changing the context of
its interpretation. In this case the context is just a set of
bindings , i.e., associations between variables and their values.
In the next section you will see how to keep track of the context
of a formula in such a way that it can be evaluated without the
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use of substitution, renaming or collision tests.

1.4.4 hand evaluation

In this section we will study the use of the context or
environment of a formula - i.e., the set of bindings that give
that formula its meaning. These will be represented by diagrams
of the form:

9 2itf t

2s in 8 cos 8

This expreses the fact that the context of the formula
'2sin 8 cos 8' is the binding of 8 to 2ftft.

^s our first examole, let's consider the evaluation of '
x+1

'

in a context in which x is bound to 2, i.e.,

« 2

X+i

Since this is the context of the entire formula, it is also the
context in which each of its subformulas must be interpreted.
Hence, this can be reduced to

x
I

2 x
J

2x+1
Now, the interpretation of x in the context x=2 is just 2, so we
have

and the interpretation of 1 in any context is 1, so2+1
or 3. Similarly, we can evaluate x*y in the context y=3 , x=2.

y 3

= >

v 1 3

X 2 x
J

2

x *y X

y 3

X 2|

y

=> 2-3 =>

Next, we'll take a more complicated example, the evaluation of

'Ay { x*y} (x+i) ' in the environment x=2:

>y{x-y} (x+i)
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Before we can bind y to x+1 we have to know the value of x+i (in

context, of course). Hence, we will separate the two parts of
the application:

7T
/y(x-y} ( x+1 )

Notice that we have kept the formula ,\y{x*y} in context - other-
wise it would lose its meaning. Continuing our evaluation, we
previously saw that x+1 in the context x=2 evaluates to 3, so we
have

:

2

>y(x*y} (3)

what is the effect of >y{x*y}(3)? It is to add the binding y=3
to the context of interpretation:

y 3

X 2

x'y

We have previously seen that this reduces to 6.

We will expand on the previous example a little. In that
example we applied to the argument 3 the function ,\y{x'y} in the
context x=2, i.e., the funnction represented by

Ay{x*y}

Next we will consider the evaluation of f(3) in a context that
binds f to the above function. The result, of course, should be
the same. We start with

f x
I
2| I

>y{x-y)
|

f (3)

We must evaluate the operator and operand seoarately:

/
x _zj I

X-jix-j}
|

3

Constants are independent of the context, so the operand's value
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is 3. The operator is a variable, f, which must be interpreted
in the context. When when we substitute this definition we get:

x |
2

>y { x * y } (3

which we have already seen is 6. Notice that we have always
preserved the meaning of Ayfx'y} by bringing the context along
with it. We are now at the point where we can formally state our
evaluation rules.

1.4.5 constants

Since the value of a constant does not deoend on
text, we evaluate it by eliminating the context.

= >

its con-

c
\{

for k a constant.

1.4.6 variables

Tn contrast to constants, the value of a variable depends
entirely on the context. We find the value of a variable by
looking it up in the list of bindings in the contour (bv conven-
tion, we take the first occurence of the variable in that list).
The rule is:

= >

:

V X

:

V

where v is a variable.

If x is not bound in this context, then it
as we know it has no value)

.

s free ( i . e so tar

1.4.7 abstractions

An abstraction often will have free variables that are
defined in its context. If this context is not preserved then
the abstraction will change its meaning. Therefore, we will
leave an abstraction unevaluated until it is ready to be applied
to some arguments. We show this delay of evaluation:
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>x{E} = > >x{f:}

(no change)

1.4.3 applications

Consider an application such as 'f(x+l)'.
tion Order says that in order to determine its value it is first
necessary to determine the value of its operand, '

x+1
' , and its

operator, 'f'. Of course the value of each of these is found by
interpreting it in the context of the entire application:

Standard Reduc-

r

tie) = >

c

f (

Of course, there is more to the evaluation of applications than
this. If the application is to make sense then the evaluation of
the operator must result in an abstraction (with its context).
That is, we will get a result like:

>x(H} (A)

Now, this means that C is the context of the abstraction >,x{5}.
The application above is evaluated by adding the binding x=A to
the context C, and then using this as the context in which to
interpret E. Summarizing, the rule is:

G

Xx{E) (A) = >

x ! A
r

E

1.4.9 primitive applications

We have already seen several examples of the evaluation of
primitive applications, such as 'x+1' and 'x'y'. In each of
these it was first necessary to evaluate the operands of the
primitive. This leads to the general rule:

C
o ( xl , . . . , xn = >

1.4.10 conditionals

P( xl xn

Recall that we specified a deviation from Standard Reduction
Order for conditionals. We said that we would first reduce the
condition and then, depending on whether the result was 'true' or
'false', reduce either the true branch or the false branch. This
avoids errors in situations where the other branch is not
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reducible. Reducing the condition is accomplished by the rule:

ZT
[ b = >

r

-» t f 1

c !

b

When the condition has evaluated to 'true' or 'false' the follow-
ing rules interpret in context the corresponding branch.

c

f ][ true —» t 1

c

false -^ t 1 f 1<

= >

= >

c_
t

1.4.11 example of hand evaluation

As an example of these procedures we will evaluate

let i=3 in
let f = proc(x) { x*i } in

let i=2 in
f (i)

which we saw in Chapter 3. The crucial aspect of this example is
that the context of oroc(x) {x'i} is i=3. We can see that this
context is preserved in the following figure. In this example we
first eliminate syntactic sugar and write the above formula:

Xi{ Xt{ Xi{ f(i) 1(2) }(>x{x-i} ) }(3)

1.4.12 representation def ined

We will next write an interpreter for ELC (the extended
lambda calculus) in ELC. Since we will be using ELC, and the
only primitives we have in ELC are for manipulating lists, we
will have to encode lambda expressions as lists so that they can
be manipulated. This is the representation we will use:

FORM EXAMPLE REPRESENTATION
constants

variables
abstractions
applications
prim, applies
conditionals

string
<5 8 16>
x

Axy{E}
F(A,B)
cons (A,B)
[ c -» t f 1

<'const' 2>
('const' 'string'>
<'const' <5 8 16>>
<*var' 'x'>
<'lambda' <'x' 'y'

<*call' F <A B>>
<

'
pr im ' ' cons ' <A

<'if c t f>

> E>

B>>
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Figure I. Example of Hand Evaluation

It is necessary to append the "taq word" 'const' to the beginning
of constants to prevent confusion, for instance, between the
lists representing variables and constant lists that happen to
begin with the string 'var'.

We will look at several examples of lists that represent
lambda expressions. The expression
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t ( 1 , 2

)

is reoresented bv the list:

<"call' <'var' , f'>«'const' i> <'const' 2>> >

The primitive application

cons (y , <>)

is represented by

<'orim' 'cons' «'va>" 'y'> <'const' <>> »

For a more complicated example, consider:

>xy{ cons ( x, cons ( y, <> )) }

This is reDresented by

<'lambda' <'x' 'y'>

<'prim' 'cons' «'var' 'x'>
<'prim' 'cons' «*var* v'>

< 'const' <>> >>> »

1.4.13 field accessing functions

SuDDose L is a list reoresentino an abstraction, e.q.,

<'lambda' <'x' 'y'> <'var* 'x'>>

It we wish to extract the bound variables from L, we can do this
by L [21

:

L [21 => <'x' 'y'>

Similarly, the body of the abstraction can be extracted by LT31:

L [ 31 => <'var' 'x'>

Both of these ooerations will be more readable if we define the
field access inq functions ''bvs

-

' and "body' 1 to qet the bound vari-
ables and body, respectively, of an abstraction:

let bvs = oroc(x){ x[21 }

and body = oroc(x)f x[31 } in ...

Then we can write
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bvs(L) => <'x' 'y*>

body(L) => <'var' 'x'>

It will also be useful to have a function 'is-lambda' to tell us

if a list represents an abstraction:

let is-lambda = oroc(x){ x[ll = 'lambda' } in ...

This function determines if a list reoresents an abstraction by
checking if its ''tag word" is 'lambda*. For instance,

is-lambda (L) => true
is-lambda( <'con3t* 2> ) => false

Of course, we will want functions like 'bodv' and 'is-lambda' tor
each of the lists which reoresent a tyoe ot lambda expression.
Rather than define each separately like we did above, we will use
the abbreviation

structure lambda: (bvs, body)

to mean that lists whose first element is 'lambda' will have two
more elements, selected by the functions 'bvs' and 'body'. This
is called a structure definition and is equivalent to the
declaration:

let is-lambda = oroc(x){ x[ll =' lambda ' }

and bvs = oroc(x) ( x[21 }

and body = proc(x) ( x[31 }

in ...

The structure declarations tor the lists that reoresent lambda
expressions are given in the following figure. The definition of
these tield accessing functions will make our interoreter much
more readable.

structure const: (constval)
structure var : (id)
structure lambda: (bvs, body)
structure call: (rator, rands)
structure prim: (rator, rands)
structure it: (cond, t-branch , f-branch)

figure 2. Lists Representing Lambda Expressions

1.4.14 association lists.

So that environments (contexts) can be manipulated by the
primitives with which we have equioped the lambda calculus, we
will define a reoresentat ion , called an association list (or a-
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list) , for environments. ^n association list is just a list
wherein each element ot the list is a pair containinq the name ot
a variable and its value. Por instance, an association list
representing an environment in which x=2, v='^onterev' and z=<0 1

2> is:

< <'x' 2> <'y' 'Monterey'> <'z' <0 1 2>> >

We will define several Drimitive functions on association lists.
The function 'assoc' is defined so that 'assoc(x,a)' is the
result ot looking uo that variable name x in the association list
a .

let rec assoc = proc(x,a) begin
if equal ( x, ailHH) then a r 1 1 T2]

else assoc( x, rest(a)) endif end.

p or instance, if L is the a-list

< <'x' 2> <'y' 'Monterey'> <'z' < r
> 1 2>> >

then

assoc( 'y', L) => 'Monterey'.

The function 'pairlis' is a little more complicated ; it is used
for binding variables to values and adding them to an association
list. That is. if x is a list ot variable names : y is a list of
values and a is an association list, then ' na i r 1 is (x

, y , a )
' is an

association list in which each element of x is oaired with the
corresoonding element of y and apoended to the front of a. por
instance ,

pairlis( <'w' 'cost' >, <^ 25>, L )

=> <<'w' o> <'cost' 2S> <'x' 2> <'y' 'M nterey'> <'z" <0 1 2>>>

To see how this can be done, notice that if 'a' is an a-list, and
<xi yi> is a pair representing a binding, then

cons ( <xi y i> , a)

will add this oair to 'a'. The resulting definition of 'pairlis 1

is:

let rec pairlis = proc(x,y.a) begin
if null (x) then a

else cons ( oair( x[ll, y T 1 ] ),
pairlis( rest(x), rest(y), a) ) en^if end

where pair = proc(x,y){ cons ( x, cons ( y, <> )) }.



- 54 -

1.4.15 closures

We have previously seen that it is necessary to keep an
abstraction's context with that abstraction in order to preserve
its meaning. We have symbolized this with diagrams like:

>y{x+y}

We will now investigate in more detail the nature of this con-
struct .

A formula is called closed if
instance

,

t has no free variables, for

>x{ Ay{x+y} } (3)

Closed formulas are important because their interpretation is

completely independent of context. A formula is called open if

it has one or more free variables. Hence, open formulas are
dependent on their context for their interpretation. This for-
mula is open:

>y{x+y}

An open formula can be closed by providing bindings for its free
variables. For instance, the above open formula can be closed by
binding x to 3

:

let x=3 in >y{x+y}

or

>x { >y{x+y} } (3)

This is called the closure of the formula >y{x+y}. More gen-
erally, a closure is a formula together with bindinqs for all of
its free variables. This is just the construct we have illus-
trated by

x 3

>y{x+y}

Our next task will be to determine how we can implement closures
using lists. The key is our diagram; a closure has two parts:
an abstraction and its context. These parts are traditionally
called the _i_p and e_p, which stand for instruction part and
environment part, respectively. We will represent a

structure
list that

with two fields called 'ip' and ' ep The
closure by
ip will be

represents an abstraction and the ep will be an a-list
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representing a context. This is summarized by

structure closure: (in, ep)

The function for constructing closures is defined:

let closure = proc(ip,ep){
cons( 'closure', pair( ip, eo )) }

Thus, we can make a closure from the abstraction f and the
environment e by closure ( f , e)

:

closure(f,e) => <'closure' f e>

We can test if something is a closure bv is-closure(c) and
extract its Darts by ip(c) and ep(c). The closure data type is
described in the following figure.

ip( closure(f,e) ) = f

ep( closure(f,e) ) = e

closure( ip(c), ep(c) ) = c

is-ciosure( closured, e) ) = true

where is-lambda (f

)

and e is an a-list
and is-closure (c)

Figure 3. The Closure Data Type

1.4.15 mechanical evaluation .

We will define a function 'eval' such that if 'e' is a list
representing a lambda expression and 'a' is an association list
representing an environment, then 'eval(e,a)' is the result of
evaluating that lambda expression in that environment. Thus,
'eval(e,a)' corresponds to

a

e

The structure of our interpreter will be a large conditional so
that we can handle lambda expressions case by case. In skeleton
form it is:
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let rec Eval = proc(e,a)
begin

if
elsif
e 1 s i f

elsif
elsif
elsif
end if

end

is-const (e)

is-var (e)

is-lambda (e)

is-call (e)

is-or im (e)

is-if (e)

then
then
then
then
then
then

in

We will consider each of these cases in turn. In
them, it will be helpful if you refer back to the
defined in figure 2.

d iscussing
field names

The simplest case, as we have already seen, is constants,
because they do not depend on the context tor their interpreta-
tion. In this case we just extract the constant value from the
list and return it:

if is-const(e) then const-val (e)

The next simpler case is variables.
<

' var ' x>
envi ronment

The result
is just the result of looking up x

(which is the a-iist bound to 'a'):

of evaluating
in the current

elsif is-var(e) then assoc ( id (e) , a)

^s discussed in the previous sections, the rule for abstractions
will form a closure by combining the abstraction and its environ-
ment of definition (context). This is accomplished by:

elsif is-lambda(e) then closure(e,a)

Wh e n

the
(ep)
the
(ip)

this closure is applied to its operands by a application,
'apply' function will extract the environment of definition
from the closure and use it as the basis for constructing
environment of evaluation for the bodv of the abstraction

Mext we will consider the case of Primitive applications.
If e is a primitive application then rator(e) is its operator,
which is a string such as 'first' or 'cons', and rands(e) is a

list of its operands. In our hand evaluation procedure, we first
interpreted the operands in context and then performed the primi-
tive operation. Here we will use an auxilliary function 'evlis'
to evaluate the operands and an auxilliary function
to perform the operation:

' apply-pr im

'
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elsif is-prim(e) then apply-orim( rator(e), actuals)
where actuals = evlis( rands(e), a)

Evlis is a simple recursive procedure that evaluates each element
of its argument list and returns a list of the results:

let rec evlis = proc(L,a) begin
if null(L) then <>
else cons ( eval( L[ll, a), evlis( rest(L), a)) endif end in

The definition of ' apply-pr im ' is simply a conditional
dling each of the primitive operations:

for han-

let apply- prim = proc(f,x) begin
if
elsif
elsif
elsif
elsif
endi f

f=' first'
f=' rest'
f = ' c o n s

'

f
=

' atom

'

f='null '

end in . .

then f i rst (x r 1]

)

then rest (x [1 1

)

then cons( x [ i ] ,

then atom (x [1]

)

then null (x [11

)

x[21)

Of course,
just add
pr im ' .

if we want additional primitive operations, we can
clauses for handling them to the definition of 'aoply-

The application of non-orimitve operations is a similar pro-
cess. The operands must be evaluated using 'evlis', as was done
for primitive applications. Since the operator is also a for-
mula, it also must be evaluated in context. This evaluation must
yield a closure. The
parameters. That is:

closure is then applied to the actual

elsif is-call (e) then apply( closure, actuals)
where closure = eval( rator(e), a)

and actuals = evlis( rands(e), a)

Next, we must consider what 'apply' has to do to complete the
function call. In our hand evaluation procedure we paired the
bound variables with the corresponding actual parameters and
added these bindings to the context of the abstraction. This new
context was used as the environment for evaluating the body of
the abstraction. We will do the same here.

If b is the list of bound variables, x is the list of actual
parameters and c is the context of the abstraction, then
pairlis (b , x , c) is the environment in which to evaluate the body
of the abstraction. The 'apply' function that accomplishes this
is

:
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let rec apply = proc ( closure, actuals) begin
let abs = ip(closure) in

let env = pairlis( bvs(abs), actuals, ep(closure;
eval ( body (abs), env ) end

) in

The only case left to be analyzed is the conditional. In our
hand evaluation orocedure we interpreted the condition in context
to get a truth value. We then used this value to determine
whether to evaluate the true branch or the false branch of the
conditional. This is exactly what needs to be done in 'eval':

elsif is-if(e) then
if eval ( cond (e) , a)

then eval( t-branch (e)

else eval ( f-branch(e)
a)

a) end if

This completes the definition of 'eval'; the complete interpreter
is shown in the following figure.

let rec
if
elsif
elsif
elsif

whe
elsif

whe
and

elsif
if
els

end if

Eva
is*
is-*

is-
is-

re a

is-
re c

a

i s

eval
e ev
end

1 = proc(e,a) begin
const (e) then const-val (e)

var(e) then assoc( id(e), a)

lambda(e) then closure ( e, a)

prim(e) then apply-pr im ( rator(e), actuals!
ctuals = evlis( rands(e), a)

then apply ( closure, actuals)
eval ( rator (e) , a)

evlis ( rands (e) , a)

-if (e) then
( cond(e), a) then eval( t-branch (e) , a)

al ( f-branch(e), a) endif

call (e)

losure =

ctuals =

and rec evlis = proc (L, a) begin
if null (L) then <>
else cons ( eval (L [11 ,a) , evlis ( rest (L) , a ) ) endif end

and rec apply = proc ( closure, actuals) begin
let abs = ip(closure) in

let env = pairlis( bvs(abs), actuals, ep(closure)) in
eval ( body (abs) , env) end

and apply-prim = proc(f,x) begin
if f='first' then first(x[l])
elsif f='cons' then const xfll, x[21 )

elsif ...

endif end
in ...

Figure 4. A-List Eval
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The interpreter is very similar to the interpreters used for LISP
and similar languaqes. To clarify its operation, several exam-
ples will be presented. In these examples we will trace the
invocations of 'eval' and 'apply' and occasionally other func-
tions .

EXAMPLE 1: reduction of >xy {cons (y ,x) } (<2 3>, i).

In the list representation this is:
E = < 'call' F A>
F = <

' lambda '
<

•
x'

'
y •> 3>

B = <'prim' 'cons' P>
P = <<'var' 'y'> <'var' 'x'>>
A = «"const' <2 3>> <'const' 1>>

Eval (E, <>) :

closure = evai(F,<>) = ('closure' F <>>
actuals = evlis(A,<>) = <<2 3> i>
apply( closure, actuals ):
abs = F
env = pairiis( <'x' 'y'>, actuals, <>

)

= << 'x' <2 3>> < 'y' x>>
eval (3 , env) :

actuals = eviis( <<'var' 'y'> <'var' 'x'>>, env )

= <i <2 3>>
appiy-prim( 'cons', <i <2 3>> ):
cons( x, <2 3> ) = <x 2 3>

EXAMPLE 2: Reduce

let i = 3 in
let f = >x{ prod(x,i) } in

let i = 2 in
f (i)

To translate this to list representation it is necessary to first
eliminate syntactic sugar:

Xii Xi{ Xi{ f(i) } (2) } ( Ax{prod(x,i) } ) } (3)

.

Notice that by doinq a hand reduction of this we can determine
that the correct reduction is 6. For the sake of this example we
will assume that 'eval' can evaluate the orimitive application
'prod', which multiplies two numbers.
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I

F

J
X

P

= < 'call' I

= < lambda'
= < ' lambda'
= < ' lambda

'

= < ' lambda

'

<<'const' 3>>
< ' l '> < 'call '

<• l'> <'cail'
<

' 1 •> < 'call *

<
'
x'> P>

>

F <X>> >

J << ' const

'

< * var ' • l '>
2>> >>
<< 'var

'

' i ' >> >>

= <'prim' 'prod' <<'var' 'x*> <'var' 'i'>> >

<>>

X << ' l ' 3>> >

3>> >

Eval ( S, <> ) :

closure = <'ciosute' I

actuals = <3>
appiy( closure, actuals ):

abs = I

env = << ' i ' 3>>
evai( <'caii' F <X>>, << ' i ' 3>> ):
closure = ('closure' F <<*i' 3>> >

actuals = avlis( <X>, <<'i' 3>> )

= <C> where C = ('closure'
appiy( closure, actuals ):
abs = X
env = << ' l ' C> <

'

l
' 3>>

evai( <'call' J <<'const' 2>>>, env
closure = ('closure' J <<'l' C> <'i
Actuals - < 2 >

appiy( closure, actuals ):
abs = J

env = <<'i' 2> <"l' C> <'i' 3>>
eval ( <'cali' <*var' 'l'> <<'var' 'i'>> >,
closure = evai( <'var' 'l'>, env )

= C
actuals = <2>
apply( closure, actuals)

:

abs = X
env = pairlis( <'x'>, <2>,

= pairlis( <

'

x'> , <2> ,

= << 'x' 2> <
' l ' 3>>

eval ( P , env )

:

actuals = eval ( <<'var'
= <2 3>

prim-appiy( 'prod', <2 3> )

prod(2,3) = 6

env ) :

ep( closur e) )

<<' i' 3>> )

x'> < "var ' ' i '>> , env )

Do the reduction by hand to be sure you see that this is
right answer.

the

T . 4 . 1 7 replacement of var iables by £ ixed
that our current interpreter spends a lot of its

locat ions . Observe
time searching

association lists for the values of variables
environment '

a

That is, the
evaluation of <'var' 'x'> in the environment 'a' requires search-
ing 'a' for a pair whose first element is 'x'. Such searching is
expensive on most computers, so we will develop a method of
interpreting the lambda calculus which does not require it. In
particular, we will replace searching by array subscripting,
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which is much more efficient. we will develop the Drocess for
single variable abstractions initially and later extend it for
multiple variables. Consider an abstraction '>x{E}' in some
environment '<...>'. The closure formed from evaluatinq this
abstraction will be

<'closure' <'lambda' <
' x ' > E> <...> >.

When this closure is applied to
tion will always take the form

an ooerand value its evalua-

eval( 5, «'x' u> • > )
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the static distances of the variables from their definitions are
indicated. For 'f' it is 2, for 'x' it is 1, for the leftmost
'i' it is 1 and for the rightmost 'i

1 it is 2. Since we know
where each variable occurs in the association list, we can
replace expressions of the form <'var' 'x'> with expressions of
the form <'var' n> where n is the position of variable 'x' in the
environment. This value n will be called the vn or variable
position , as indicated in the new structure declaration for vari-
ables :

structure var: (vp)

Since we no longer use the variable names to look them up in the
environment, we can eliminate them and represent the environment
as a list of values rather than an association list. For
instance the association list

< <'x' 2> <'y' 'Monterey'> <'z' <0 1 2>> >
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will be simplified to

< 2 'Monterey' <0 1 2> >.

Then, looking up <'var' n> in environment 'a' is simply accom-
plished by a[nl. Since variables are no longer needed, the bound
variable list can also be eliminated from the representation of
abstractions. For instance ">x{ cons (x , <> )

}
' is represented by

<'lambda' <'orim' 'cons' <'var' 1> <'const' <> >> >.

The new structure definition for abstractions is:

structure lambda: (body)

This process of converting variables from names to numeric loca-
tions is one that is usually Derformed by a translator or com-
piler. Since we are translating bv hand from the lambda calculus
to its list representation, we must do this counting ourselves.
It is generally true of programming language implementations
that, as we have done here, the run-time efficiency of a program
can be increased by doing more work at compile time.

There are only a few simple changes necessary to convert
'eval' to use the new numeric variables -- all simplifications.
The rule for 'var's is simply altered to subscript the requred
value out of the environment:

elsif is-var then a[vp(e)1

The only other change is to the 'apply' procedure: since environ-
ments are simple lists of values the environment of evaluation is
constructed by appending the operand to the front of the environ-
ment of definition.

and rec apply = proc ( closure, actuals) begin
let abs = ip(closure) in

let env = append ( actuals, ep(closure) ) in
eval( body(abs), env) end

To clarify these ideas we will trace the evaluation of the lambda
expression

:

>i{ Xf{ XH f(i) 1(2) } ( Ax{prod(i,x) } ) }(3)

This is represented by the list:
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E = <'cail l

I <<'const' 3>> >

I = <'lambda' < , cali' F <X>> >

F = <'iambda' <'caii' J <<'const' 2>> >>

J = <'iambda' <'call' <'var' 2> «'var' x>> >>

X = <• lambda' P>
P = <'prim' 'prod' «'var' 2> <'var' x>> >

Evai ( E, <> ) :

apply( <'closuLe' 1 <>>, <3> ):

env = append( <3>, <> )
= <3>

evax( <
l call' F <X>>, <3> ):

Evaluation proceeds much as beroie, until the stage when the
application t(i) must be evaluated:

eval( <*call' <'var' 2> «'var' 1>> >, <2 C 3> ):

closure = eval ( <'var' 2>, <2 C 3> ) = C
actuals = evlis( <<'var' i>>, <2 C 3> )

= <2>
apply( C, <2> )

:

env = append( <2>, <3> ) = <2 3>
eval ( P, <2 3> )

:

actuals = evlis( <<»var' 2> <'var' i>>, <2 3> )

= <3 2>
prim-appiy( 'prod' , <3 2> ) =5

1.4.18 static nesting level . The approach used above is based
on the replacement by the translator of variable names by numbers
indicating the static distance of the use of the variable from
its definition. This number will vary from one use of a variable
to another. For instance, in

Ax{ const x, >y{ cons( x, append(y,y) ) }(<A 3>) ) } (C)

the first use of 'x' will be translated by <'var' 1> while the
second use of 'x' will be translated by <'var' 2>. The transla-
tion process would be a little simpler if a single number was
always associated with all uses of a given variable. We can do
this by using the static nesting level of the definition of the
variable as this number. The static nesting level of the
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definition of a variable is one more than the number of scopes in

which that definition of the variable is nested. In the diagram
below, the static nesting levels of the variables are indicated:

Ai{ Xt
1 2

Xii
3 I

f (i)

4 4

} (2) } ( Ax{
2

} ) (3)
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let rec apply = proc ( closure, actuals) begin
let abs = ip(closure) in

let env = append ( ep(closure) , actuals )

eval ( body (abs), env) end
in

The translation of lambda expressions into the list representa-
tion is simplified since a variable is always translated in the
same way The translation of our previous example is

J = <'iambda' <*cali' <'var' 2> <<*var' 3>> >>
P <'ptim' 'prod' <<'var' i> <'var' 2>> >

EXERCISE: Trace the evaluation oi this list.
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1.4.19 multiple parameters . To keen the discussion simple, we
have only been discussing the implementation of abstractions and
applications with a single parameter. T»'e will now extend our
implementation to handle more than one parameter.

In our current implementation (using static nesting
the environment is represented by a list of the form

levels)

<v v n>

static nestingwhere v- is the value of the variable bound at
level 1. To handle multiple parameters we will simply replace
each of these values with a lis t of the values bound at each
static nesting level. That is, an environment has the form

<ar- ar «n
>

where each ar^ is called the activation record (or call frame )

for static nesting level i. An activation record is defined to
be all of the information relevent to a call of a function. Fach
activation record has the form

<v- V- m

where the v^s are the values of the variables declared at the
static nesting level corresponding to the activation record. To
access a variable it is now necessary to use two coordinates,
(ep,vp) , where the envi ronment part (ep) is the static nesting
level of the activation record containing the variable, and the
var iable part ( vp) is the position of the value of the variable

we are in thewithin that
envi ronment

activation record. For example, if

< <1 2 3> <'&' ' B' 'C*> <4 'D' <5 <S> 'E'> >

then the (eo,vp) pair (2,1) will refer to 'V, the pair (3,2)
will refer to '0' and the pair (3,3) will refer to <S 6>. In
particular, if 'a' is the environment, then 'a[epl [vpl ' is the
value of the variable corresponding to the pair (ep,vp) . In
order to make use of this new structure for the environment, it

is necessary to translate variables into lists of the form

<
' var ' ep vp>

where (ep,vp) is the location of the variable. This corresponds
to the structure:

structure var: (ep, vp)

Therefore, to handle multiple parameters, the rule for 'var's in
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'eval' must be changed to:

elsif is-var(e) then ar[vp(e)l
where ar = a [ ep (e)

1

The next issue to be addressed is the construction of these
environments by the 'apply' procedure. If the environment of
definition from the closure is

<ar-^ ar >
n

and the actual parameters of the application are

<v- v •

m

then the environment in which the body of the abstraction is
evaluated should be

<ar ar„ <v- v • • • v >>
n -l ^ rn

That is, a new activation record, ar + ]_
= <v^ ••• v >, is made the

new last element in the environment. If ep' is the environment
of definition and 'x' is the actual oarameter list, then

consR ( ep, x )

where consR = proc(L,x){ append ( L, cons(x,<>) ) }

will construct the environment of evaluation. The aopropr iately
modified 'apply' is:

let rec apply = proc( closure, actuals) begin
let abs = ip(closure) in

let env = consR( ep(closure), actuals) in
eval ( body (abs) , env ) end

and consR = proc(L,x){ apoend ( L, cons(x,<>) ) }

The complete 'eval' is shown in the next figure. To demonstrate
the operation of the new 'eval' , we will trace the reduction of

>xy{ Xz{ z*z + x } (x+y) } (2,3)

First we translate the lambda expression into our list represen-
tation, numbering the lambdas as before:

<call <lambda(l)
<call <lambda(2) <prim sum <prim prod <var 2 1> <var 2 ]

<var 1 1>> >

<prim sum <var 1 1> <var i 2>> >>
<const 2> <const 3>>
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let rec Eval = proc(e,a) begin
if is-const(e) then const-val(e)
elsif is-var (e) then ar[vp(e)l where

then closuref e, a)

then apDly-Drim( rator(e)
evlis ( rands (e) , a)

then apply( closure, actuals)
eval ( rator (e) , a)

elsif
elsi f

i s-var (e)

i s-*lambda ( e)

is-pr in (e)

where actuals =

elsif is-call (e)

where closure =

and actuals =

elsif is- if (e)

i f eval ( cond (e)

else eval ( f-branch(e)
endif end

ar = a [ep(e)

1

actuals)

evlis ( rands (e) , a)

then
, a) then eval ( t-branch(e)

a) endif
a)

and rec evlis = proc(L,a) begin
if null (L) then <>

else cons ( eval (L [ 1 1 , a) , evlis ( rest (L) , a ) ) endif end

and rec apply = nroc( closure, actuals) begin
let abs = ip(closure) in

let env = consR( ep(closure), actuals) in
eval ( body(abs), env) end

and apply-prim = proc(f,x) begin
if f='first' then first(x[l])
elsif f='cons' then cons( xTll , x[2] )

elsif ...
endif end

in ...

and consR = proc(L,x){ append ( L, cons(x,<>) ) }

Figure 5. Eval for Fixed-location Variables

Here we see that 'x', 'y' and 'z' have been translated as ' <var 1

1>', ' <var 1 2>' and '<var 2 1>', respectively,- on the basis of
their static nesting levels and their positions at that level,
i.e. their (ep,vp) coordinates. The trace follows:
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E

X

z

s

p

<'call' X
<

' lambda

'

<< ' const.

'

<'cali' Z

2> <
' const

'

<S>> >

3>> >

= ('lambda' <'pnm' 'sum' <P <'var' I I>> >>
= <*pnm' 'sum' «'var' i I> <'var' I 2>> >

= <'pnm' 'prod' «'var' 2 i> <'var' 2 i>> >

Evai ( E, <> )

:

appiy( ('closure' X <> >, <2 3> ) :

env = consR( <>, <2 3> ) = <<2 3>>
evai( <'call' Z <S>>, <<2 3>> ):

actuals = evlis( <<'pnm' 'sum'
«'vat' i I>

= < sum (2, 3) > = <5>
2>> >>, <<2 3>> )

appiy(
env =

eval (

<' closure
consR

(

<
'
pr lm

<<2
Z <<2 3>> >,
3>>, <5> )

=

sum <P <'var
actuals = evlis( <P

<5>
<<2
I 1 '.

1>>

) :

3> <5>>

= < evai(P,<<2 3><5>>

>> >,
<<2
>

<<2 3> <5>> )

3> <5>> )

It is now
3><5>>) .

necessary compute the subexpression, eval(P,<<2

evai ( ?, <<2 3> <5>> )

:

actuals = evlis( <<'var' 2 I> <'var' 2 i>>,
<<2 3> <5>> )

= <5 5>
prim-apply( 'prod', <5 5> ) = 25, hence,

actuals = <25 2>
prim-appiy( 'sum', <25 2> ) =27

You will recall that there were two possible versions o

single-parameter 'eval': one which used static nesting leve
one which used static distances. There are also two po
versions of the multiple-parameter version of 'eval': we c

either static nesting levels or static distances. When we
tigate implementations of the lambda calculus further, lat
will find that there are circumstances when it is better t

the static distance and other circumstances when it is bet
use the static nesting level. These are similar to imple
tion techniques called "static chains" and "displays", whi
discussed later.

EXERCISE : Translate the lambda expression

>xy{ Xz{ z*z + x } (x+y) } (2,3)

f the
Is and
ssible
an use
inves-
er , we
o use
ter to
menta-
ch are

into the list reoresentat:
static nesting levels.

on using static distances instead of
the aoprooriate changes to 'eval' so
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will work correctly with 'var's containing static dis-that it
tances and show
above expression.

that it works by tracing the evaluation of the
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Chapter 5

I .5 Runtime Organization

I .5.1 Goals Defined

In this chapter we will study the stack implementation of
the extended lambda calculus. That is, we will study how FLC can
be translated into the instructions of conventional computers by
usinq the data structure known as a stack . Since all block-
structured languages, when stripped of their syntactic sugar, are
essentially the lambda calculus, you will be learning how to
implement these lanquages. (This important class of languages
includes Algol, Pascal, PL/I and Ada.)

I .5 Stacks

The data structure used on most computers for implementing
block-structured languages is the stack . Stacks derive their
name from the push -down stacks that are often used for dispensing
plates in cafeterias (figure 1).

Figure I. The Original Push-Down Scack

with these devices, each time a p late is removed from the top,
the stack p ops up to bring the next plate to the too. Con-
versely, whenever a plat e is placed on th e too of the stack, it
Dushes down the plates already there

.

Thus, a particular plate
can be pushed onto the stack, and have other olates pushed on top
of it, thereby hiding it. But if these plates are later popped
off, then the plate we started wi th will again be at the too of
the stack. This Drooert y, being able to save thi ngs (or informa-
tion) by push ing them on a stack , makes the stack data structure
particularly valuable in programming language implementation

.

Stacks are al so know as push-down stores , deques and LIFOs (which
means "last- in, first-o ut" and i s pronounced "li e-f oe" ) . To see
the relevence of stacks to programminq language implementation

,

we must next investigate postfix instruct ions.
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I .5.3 Postfix Instructions

we have seen how expressions can be written
form. For instance,

in functional

can be written

x + ab(y-z)

sum ( x, prod ( orod(a,b), dif(y,z) ))

when an expression such as this is written without parentheses it
is call prefix notation o r Pol ish notation (after Jan fe

ukasiewicz, the Polish logician who invented it). The above
expression written in prefix notation is:

+ x a b - v z

One of the important orooerties of Polish notation (and the rea-
son it was invented) is that it is never necessary to use
parentheses with it; it is ofen called parentheses free nota-
tion .

The reason Polish notation is also called prefix notation is
that the operator is written before (pre-) its operands. E.g.

+ x y

The usual mathematical convention is called infix notation
because the operator is written between (in-) its operands:

x + y

It should be obvious that if we wrote the operator after its
operands, then we would be writing in postfix or reverse p olish
notation. Reverse Polish notation is more important to computer
scientists than Polish notation because reverse Polish can be
evaluated easily by using a stack.

You may be familiar with "PPM" (or Reverse Polish Notation)
calculators, such as those manufactured by Hewli tt-Packard and
National Semiconductor. with these calculators expressions to be
evaluated are entered in postfix notation and temporary results
are held in a stack. ^or instance, to calculate

2 + 5 10,

which is postfix notation is

2 5 10 * +,
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we would hit the keys:

GD rwn CD rwn en ED czi m
The follwinq diagram shows how the stack holds the intermediate
results

.

2 ENT 5 ENT .0

10
5 5 50

2 2 Z 2

Notice how the stack holds the operands before the operation
(e.g. 5 and 10) and the results after the operation (e.g. 50).

I .5.4 The L-Machine Architecture

We will now investigate a computer with a stack architec-
ture, i.e. a computer that uses a stack for the evaluation of
postfix instructions. Although the L-Machine is not a real com-
puter, it is essentiallv a simplification of several commercially
available machines.

The L-Machine has three
tions) , called SP, E D and IP,

registers (high soeed memory loca-
and a memory addressed by consecu-

tive natural numbers that can hold both data and instructions
The register names are mnemonic:

SP - Stack Pointer
EP - Environment Pointer
IP - Instruction Pointer

The SP register holds the address of the top of the stack, the EP
register holds the address of the current activation record
(explained further later) and the IP register holds the address
of the next instruction to be executed. The L-Machine's storage
architecture is summarized in the following figure.

Reaisters
SP

EP

001
002
003
004
005
00*

Memory

Figure 2. L-Machine Storage Architecture
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The L-Machine has some 25 instructions that it is able to
execute. we will discuss each of these in the following para-
graphs and indicate their operation with diagrams.

1 PUSH. The 'PUSH' operation pushes a constant value
onto the stack That is, if k is any constant (i.e.,
string, Boolean or list), then 'PUSH k' will increment

number

,

the SP
register and store k

diagramatic form:
in the memory location addressed by SP. In

= >

k

Stack

PUSH k

2 PUSHEP. The "PUSHEP" operation pushes the current con-
tents of the EP register onto the stack:

EP EP
= >

PUSHEP

3 POP. The
top of the stack,
from the stack and discard

'POP' instruction discards elements from the
That is, 'POP k' will pop the too k elements

them. E.g..

stack and places it in the EP register

epTEP

b =>

SETEP

5 MARK . The 'MARK' operation moves the current contents
of the SP register into the EP register. The effect of this is
to remember the location of the current top of the stack.
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MARK

<5 COPY. The 'COPY' operation
a specified location of the stack,
stack. For instance, 'COPY 3* copies
from the top of the stack and pushes it:

copies a va
and places
the value

ue from within
t on top of the
that is third

(1)

(2)

(3)

(4)

= >

COPY 3

7 SWAP. The 'SWAP' ooeration exchanges two elements of
the stack. For instance, 'SWAP 2,5' swaps the second and fifth
elements from the top of the stack:

(1)

(2)

(3)

(41

(5)

= >

SWAP 2,5

3 PAIR . The 'PAIR' operation combines the too two stack
elements into one; the two elements become the left and right
halves of the resulting value. These two values can be extracted
by 'LEFT' and 'RIGHT', described below.

= >

PAIR
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9 LEFT, RIGHT . The 'LEFT' operation extracts the left
half of a value constructed by 'PAIR':

= >

LEFT

The 'RIGHT' operation extracts the right half.

.10 VAL . The 'VAL' operation access the current contents
of a location in memory. The 'VAL' operation takes an address
from the top of the stack and reolaces it with the contents of
the memory location at that address.

Stack-\

Memorv

VAL

11 SET. The 'SET'
location to aof a memory

an address from the top of
memory location with that address.
of the stack.

operation chanqes the current contents
specified value. It takes a value and
the stack and stores the value in the

The value is left on the top
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Stack
>

MemoryJ

= >

SET

12 ADD , SUB, mul, DIV . These ©Derations perform addi-
tion, subtraction, multiplication and division. The operands are
the two top elements of the stack, which are replaced by the
results of
lator

.

the operation. This is essentially like an RPN calcu-

= ^> x+v

ADD
(SUB, MUL, DIV similar)

Any other primitive operations with which we
L-Machine (such as the relationals, EQ,
operate analogously.

i sh to equip the
ME, IT etc . ) would

13 IP. The
the stack is 'true'
the stack and, if this value is
tion at location k (by placing k

'IF' operation performs a iump if the top of
In particular, the operation 'IP k' pops

'true', transfers to the instruc-
in the IP register) . If the too

ot the stack is false then execution continues at the instruction
which follows the 'IF'.

IP

b =>

IP

b=true
b=f alse

IF k
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14 IOTP . The 'GOTO' operation transfers control
another location by placing its operand in the IP register.

to

IP = > IP

GOTO k

OOI . The '001' operation is an "indirect goto"
top of the stack is a value that is used as the

15
is, the
of the next instruction to execute. This is accomplished
ping the stack into the IP register. 001 is used instead
when the destination address must he computed while the
is running.

IP IP b

b =>

001

That
address
by pop-
of GOTO
oronram

I .5 . 5 Activation Record Structure As we learned in Ohapter I.

A

the activation record is the implementation mechanism that embo-
dies the idea of the local environment o f a computation. Activa-
tion records will also be important to our compiled implementa-
t ion of the lambda calculus, so in this section we will study
their implementation on a stack . Y ou will remem ber that we
defined an activation record to be all of the information
relevent to a call of a procedure. In the Eval interpreter this
was " ust the values of the bound variabl es of the function. We
will see below that in the compiled implementation additional
information must be included in the activation record.

Oonsider the following lambda expression, which we have
already investigated several times:

let i = 3 in
let f = proc(x){ x*i } in

let i = 2 in
f (i)

This can be represented by the contour diagram in figure 3. In
this diagram we have drawn solid arrows from each contour to the
statically enclosing contour. These arrows are called static
links . A static cha in is any contiguous sequence of static
1 inks , for instance from the i = 2 contour to the f=A(xi} contour
to the i=3 contour. what the static chain provides is a search
path for looking up variables. For instance, if we are executing
in the environment indicated by the it in the above diagram, and
wish to evaluate 'i', then we proceed as follows. First look in
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a. i i 3
\

--- ;,-- 7" -

b f\ J
X

a *i-

J
c i !i

/ r?;

Figure 3. Contours

the local environment: is
defined here, so follow the
ment: is it defined here? Yes, the value of 'i'

hadn't been defined here we would have followed

t defined here? Mo, only 'x' is
static link to the enclosing environ-

is 3 . If it
the static link

and continued searching in the staticallv enclosing environment.

In our compiled implementation of the lambda calculus,
activation records will be stored in a stack. we will use static
links to find our wav from one activation record to the next.
For instance, when we begin executing ' f (i) ' in contour (c) , the
stack's structure will be:

Figure 4. Before call to f

The activation records correspond exactly to the contours encoun-
tered in following the static chain from 'f(i)'. The 5P register
always points to the beginning of the static chain. Mow, suppose
we call the function bound to 'f'. This amounts to entering the
contour (d ) to execute 'x*i'. The activation record for 'f will
be pushed onto the top of the stack. Mote, however that the
static chain reflects the correct environment for 'x*i':
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t?D

figure 5. Inside f

In particular, when we come to evaluate 'i', we will follow the
static chain to activation record (a), which binds 'i' to 3.

When the function 'f ' is exited the activation record (d) must be
deleted from the stack and the situation restored to that of fig-
ure 4. To do this it is necessary to regain access to activation
record (c) , the activation record of the caller of '

f*. Doing
this requires another link, the dynami c link , from each activa-
tion record to its caller. The sequence or dynamic links is
called the dynamic chain . In figure 5 we see the same situation
as in figure 5 (i.e. inside f) exceDt that the dynamic chain is
shown

.

^p

Figure 6. Inside f, with dynamic chain
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Notice that the dynamic link always points to the next lower
activation record in the stack.

So far we have seen that the activation record contains
three oieces of information: the values of the bound variables,
the static link and the dynamic link. There is one other type of
information that
temporaries. urhen
expressions we saw
to ooerate on them
here

.

is useful to include in the activation record:
we discussed the stack evaluation of postfix
that the stack holds operands until it is time
We will use the stack for the same puroose

The actual format we will adopt for activation records is
not the same as we have investiqated so far. The differences are
not important, however; we have merelv reorganized the fields of
the activation record to make it more convenient to access them
with the instructions of the L-Machine. If we were compiling the
lambda calculus for some other machine then some other arrange-
ment might be better. The important thing is the information the
activation record contains, irrespective of its arrangement:

* access to local environment (values of bindings)
* access to alobal environment (static link)
* access to caller (dynamic link)
* temporaries

This information must be in any activation record.
will use for the L-Machine is shown in figure 7.

The format we

temocra r i es
static link
dynamic link

i

er> ' io
parameter n

parameter 1

Stack-
Figure 7. Activation Record Format

I .5 Translation to L-Code
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In this section we will discuss the L-Code (L-Machine
instruction) translations tor each construct in the extended
lambda calculus. To aid this discussion we will use the notation
Afe] to denote the L-Code translation of the lambda expression e.

For instance,

At 25 ] PUSH 25

The translations we will investigate in the rest of this section
are not unique; different machines would suggest different code
sequences; there are even different ways of accomplishing the
same thing on the L-Machine. The important issue is not the par-
ticular instructions presented here, but rather the information
flow required to execute the lambda calculus constructs. Since
the lambda calculus forms a deep structure for most programming
languages we are essentially studying the implementation methods
for most programming languages.

1 Constants The translation of variables is the sim-
plest, since all we have to do is to oush the constant on the
stack. For instance,

A?25] = PUSH 25

Af'hat'] = PUSH *hat'
A(<i <'hat' 2>>] = PUSH <1 <'hat' 2>>

or in general, for any constant c,

Ale] = PUSH c

2 Var iables In the discussion of the Fval interpreter we
saw the use of (eo,vp) pairs to locate variables within the
environment. We will do the same with our compiled implementa-
tion: the eD will locate the activation record holding the vari-
able and the vp will locate the variable within that activation
record. The static distance method of measuring the ep will be

used .

First, consider how we get to the activation record in which
the variable resides: if ep=i then the variable resides in the
current activation record, which is pointed to by the FP regis-
ter. If ep=2 then the variable resides in the next most enclos-
ing activation record, which we reach by followina one link of

the static chain form the current activation record. If ep=3
then we must follow two links of the static chain. In general,
we must follow ep-1 links to get to the activation record con-
taining variable (ep,vp).

Now let us consider the L-Code required to follow the static
chain. Our goal will be to get the address of the activation



- 82 -

record ep onto the top or the stack. Consider the case ep=I. In
this case the activation record is the current one, so

PUSHEP

will push its address onto the stack.

Now consider the case ep=2; here we must follow the static
chain one link. Recall that both the EP register and the static
links always point to the static link field of an activation
record. See figure 3.

EP

Figure 3. The Static Chain

Hence, after performing PUSHEP the too of the stack is the
address of the static link for the current activation record. We
can use VAL to load the contents of this location, i.e. to get
the address of the next activation record in the static chain.
Hence

,

PUSHEP
VAL

will leave on the top of the stack the address of the eo=2
activation record.

Following the same reasoning we can see that if ep=3 then
the address of the activation record is computed by:

PUSHEP
VAL
VAL

In general

,

distance ep
the code to access the activation
is PUSHEP followed by ep-i VALs

.

record at static
We will write this:
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P'JSHEP
(ep-1) * { VAL

'*'e have seen how to use the ep part of a variable's coordinates
to qet to the activation record in which it resides. We will now
investiqate the use of the vo part to locate the variable within
that activation record. Figure 9 shows an activation record with
several measurements indicated.

vo

A.

Temos
SL
TL

Dvo

base

base-?

base-2-n+vo

ba se-2-n

Figure 9. Activation Record Distances

If base is the base address of the activation record (i.e. the
address of its static link) then

base-*2-n~vD

is the address of the vo-*th variable in that activation record.
We can rewrite this as

base - (2+n-vp)

Notice that (2+n-vp) is a constant that depends only on the vp
coordinate of the variable and the number of variables bound at

lexical level ep. We will call this latter quantity n 9p and
define

6(ep,vp) = 2+nep-vp

Thus the address of the variable with coordinates (ep,vp) is

base etD
-6 (ep,vp)

It is very easy for a compiler to compute the quantity 6(ep,vp)

;

it need only keep track of the number of variables declared at

each lexical level.
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Now we are ready to our together the two parts of the vari-
able accessing mechanism. To get the address of variable (ep,vp)

the address of the activation record at static
This is exactly what is computed by:

we need base
distance ep.

ep

PUSHEP
(ep-I) * { VAL

To get the address of the variable we must subtract S"(ep,vp):

PUSH 6 (eo,vp)
SUB

Therefore the code for accessing the variable with coordinates
(eo,vp) and leaving its value on the stack is:

Var ep,vp =

PUSHEP
(ep-I) * { VAL

PUSH 6 (ep,vp)
SUB
VAL

We have given this sequence of instructions the "macro" name Var
because it occurs so frequently. Macros like this are sometimes
called code skeletons .

por example, if the coordinates for 'x 1

are (3,2) and n3=3 then the code for accessing ': is

AM = var
PUSHEP
VAL
VAL
PUSH 3

SUB
VAL

3,2

since 6(3,2) = 2+n 3
-2 = 2+3-2 = 3.

It must be emphasized again that the L-Code shown here is
appropriate to the activation record format we have chosen. If
the activation record format were different, then different
instructions would be required. The important ideas to remember
in accessing a variable with coordinates (ep,vp) are:

1) Find the activation record holding the variable by
lowing the static chain for a static distance of ep.

fol-

2) Use the vp coordinate to access the variable
activation record found in step (1).

within the
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we can now state the translation rule for
with coordinates (eo,vp):

var iable

Afv] = Var eo,vo

3 Applications

Recall that the steps involved in evaluating a application
are

1) Evaluate the operator.
2) Evaluate the operands.
3) Construct the environment of evaluation.
4) Evaluate the body of the function in this environment.

The code that we produce for a application will have to perform
these same steps. It is:

At f (e
x e n ) ] =

Alt]

Ate ]

Call n

The Call macro instruction will do the work of construct inq an
activation record for the new environment and executing the func-
tion in that environment (steDs (3) and (4)).

EXAMPLE : Compile 'mod (7, 2)'. Assume the coordinates of
'mod' are (3,1).

A( mod(7,2) ] =

Atmod]
Am
AI2]
Call 2 =

Var 3,1
PUSH 7

PUSH 2

Call 2

As noted above, the Call macro
building the new activation
cedure. Since the parameter va!

instruction is responsible for
record and for entering the pro-
ues are already stacked, only the

dynamic and static link parts of the new activation record remain
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to be constructed. The steps are:

1) Construct dynamic link.
2) Construct static link.
3) Install the new current activation record.
4) Enter the function.

Since the dynamic link must preserve the state of the caller it
has two parts: an eo to preserve the caller's environment and an
ip to preserve the next instruction to
saved by constructing a closure:

execute These can be

PUSHEP
PUSH r

PAIR

where r is the address of the next instruction following Call ;

this is where execution of the caller will
procedure returns. This leaves the stack

resume when
n the state

the called

DL
Pn

.

PI
f--closure

n+1
n + 2

The static link must point to the environment of definition of
the procedure. As the above diagram indicates, the (n+2) posi-
tion from the toD of the stack contains a closure for the pro-
cedure to be called (this resulted from evaluating the operator
in steD (1)). The static link is constructed by extracting the
left half (ep) of this closure:

COPY n+2
LEFT

The third step, installing the new current activation record, is
accomplished by placing the address of the new activation record
into the EP register. Since the static link is currently at the
top of the stack, this is accomplished bv:

*!ARK

This leaves the stack in the state:
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SL
nr.

Pn

,

PI
f--closure

*—

%

_---—— _

n+2
n + 3

and completes construction of the activation record.

The fourth step is to enter the function. The address of
the first instruction in the function is contained in the closure
at position (n+3) in the stack. Thus transfer into the function
is accomplished by:

COPY 3+n
RIGHT
GOI

Putting together the entire instruction sequence for Call yields:

Call n =

I

} build DL
PUSHEP
PUSH r

PAIR
COPY n+2
LEFT
MARK
COPY n+3
RIGHT
GOI

r

:

build
SL

install new AR
get entry

po i n t
enter the function
the return location

It is to be emphasized again that the specific code sequence
shown above is not so important as the aeneral steps involved in
a call:

1) Save the state of the call in the dynamic link.
2) Make the static link from the ep in the closure.
3) ^nter the function at the location determined by the

ip of the closure.

EXERCISE : Design the activation record format for a computer with
which you are familiar. Write the sequence of instructions
necessary to do a Call on this machine.

4 Abstractions

an
Recall that in the Eval interpreter the proper execution of
abstraction was ensured by packaging it together with its
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environment into a closure . In the compiled case the en part of
a closure is a pointer to the activation record of definition and
the ip part is the address of the first instruction of the code
for the abstraction's body. This is constructed by:

PUSHEP
PUSH k

PAIR

where 'k' is the entry address of the function. The body of an
abstraction '>v-j_ • • • v

n { E }
' is translated to:

k:

Am
Return n

where Return is a "macro" instruction described below. Since we
do not want the function body to be executed before it is called,
we must jump over it. Therefore, the translation of an abstrac-
tion is

:

A(>Vn_ • • -V r J

n 1 E}]

PUSHEP ep 1

PUSH k ip } build closure
PAIR 1

GOTO s } skip body
k:A(E)

Return n

s

:

The Return instruction must accomplish the following tasks:

1) Pass the returned-value from the callee to the caller.
2) Restore the state of the caller from the dynamic link.
3) Delete the callee's activation record.

The state of the stack before the Return is:

answer
SL
DL
Pn

.

PI
f-clcsure

L-~.—- __ v

n+3
n+4

The returned-value ('answer' in the above diagram) can be placed
above the caller's temporaries and two words of the activation
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record deleted by:

SWAP l,n+4
POP 2

The environment of the caller is restored by

COPY 1

LEFT
SETEP

leaving the stack in the form:

1

2

n+1
n + 2

The address to which to return to the caller is extracted from
the dynamic link and saved above the answer in the stack by:

RIGHT
SWAP l,n+l
POP n

The 'POP n ' instruction deletes the n parameter values, exposing
the return-address for a 101 back to the caller. The resulting
code is:

OL
Pn

.

PI
answer

—w^-*-

Return n =

SWAP l,n+4
POP 2

COPY 1

LEFT
SETEP
RIGHT
SWAP l,n+l
POP n
GOI

5 Conditionals

} save answer
} delete closure, SL
I

} restore EP from DL
I

} get return address trom OL
} save return address
} delete parameters
} reenter caller

The compiled L-Code for handling conditionals will operate
similarly to the Eval interpreter. That is, for

[ B *> T | F ]

we must first evaluate B and if it is true evaluate T, otherwise
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evaluate F. The translation to accomplish this is:

A( [ B -> T I F ] ] =

AfB]
IF t

A[F]
COTO x

t: ACT)
x:

<S Blocks

In section 1.4.20 we
(local declarations) co
Eval directly, rather tha
true with respect to the
simpler activation record
will not be necessary
Indeed, since a block is
definition, its static
Further, since a block is
is not necessary to s

means that these items co
tion record for blocks
the format will aqree wi
record. This will alio
already discussed regardl
a procedure or a block.
use two different formats
translation process.

saw that the ef
uld be improved by
n as procedure invoc
L-Code implementatio
structure will suf
to construct or

always invoked in
and dynamic links
always invoked from

ave the IP of the ca
uld be omitted entir
, we will include sp
th that of a pro
w us to use the tran
ess of whether the v
In an actual compile
at the expense of

ficiency of blocks
implementing them in
ations. The same is
n of blocks, since a

fice and since it
decompose closures.
its environment of
are always the same,
the same place, it
Her. Although this
ely from the activa-
ace for them so that
cedure's activation
slation of variables
ariable was bound by
r we might choose to
a more complicated

with this exolanation done we can proceed with the transla-
tion of blocks. This makes use of two "macro" instructions which
create and delete the block's activation record:

AClet v
1 =e i

and

Alei)

Ate ]

Begin
AtB]
Fnd n

• and v n=e n in B]

The Begin and 5nd instructions are simplifications
Return:

of Call and
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PUSHUP } ep } build DL

PUSHEP } SL
MARK } install new current AR

End n

SWAP 1 , 3+n I save answer
POP 2 } delete first local and SL

} restore EP
SETEP } from DL
POP n-1 } discard rest of locals
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